
GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 6250 Spring 2017
Problem Set #3

Assigned: 30-Jan-17
Due Date: 8-Feb-17

Quiz #1 will be held in class on Wednesday, February 15.

This assignment is due at the beginning of class.

As stated in the syllabus, unauthorized use of previous semester course materials is
strictly prohibited in this course.

PROBLEM 3.1:
Using you class notes, prepare a 1-2 paragraph summary of what we talked about in class in the
last week. I do not want just a bulleted list of topics, I want you to use complete sentences and
establish context (Why is what we have learned relevant? How does it connect with other things
you have learned here or in other classes?). The more insight you give, the better.

PROBLEM 3.2:
Let G1, G2, and G3 be zero-mean Gaussian random variables with covariance matrix R:

Ri,j = E[GiGj ].

Define S = span{G1, G2, G3}. That is, S contains all the random variables X that can be written
as X = a1G1 + a2G2 + a3G3 for some a1, a2, a3 ∈ R. It should be clear that all the elements of S
are also zero mean Gaussian random variables.

1. Show that 〈X,Y 〉 = E[XY ] is a valid inner product on the vector space S. Defend the
terminology “root mean-square error” (RMSE) for the distance induced by this inner product.

2. Suppose X = a1G1 + a2G2 + a3G3 and Y = b1G1 + b2G2 + b3G3. Show that 〈X,Y 〉 = aTRb,

where a =
[
a1 a2 a3

]T
and b =

[
b1 b2 b3

]T
.

PROBLEM 3.3:
Find a, b, c ∈ R that minimize ∫ 1

−1
|t3 − a− bt− ct2|2 dt.
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PROBLEM 3.4:
Let the vector S contain Gaussian random variables as defined in Problem 3.2 with

R =

 1 0.4 −0.2
0.4 1 0.2
−0.2 0.2 1

 . (1)

1. Let X = G1, Y = G2, Z = G1 + G2 + G3. Now suppose we observe particular values for X
and Y , say X = x and Y = y. As all three random variables are related to one another, these
observations give us some information about the value of Z. Here we will consider linear
predictors: estimates of Z that are linear combinations of the observations; such estimates
have the form

Ẑ = α1X + α2Y α1, α2 ∈ R.

Find the best linear predictor of Z. That is, find α1, α2 so that the mean-square error
E[(Z − Ẑ)2] is minimized. Also calculate the actual value of the mean-square error for the
best α1, α2.

You will want to set this up as an “approximation in a subspace” problem. You also might
want to use MATLAB to do some of the calculations.

2. Now suppose X = a1G1+a2G2+a3G3, Y = b1G1+b2G2+b3G3, and Z = c1G1+c2G2+c3G3.
Write and MATLAB script that takes R, a, b, and c as arguments and returns the values of
α1 and α2 that minimize E[(Z − Ẑ)2] and the value of the mean-square error for these αi.
Turn in a copy of your code.

3. Try your function out on

X = G1 + 2G2 +G3/6, Y = G1/4 + 5G2/2 + 2G3, and Z = G1 +G2 +G3,

and the covariance matrix R in (1). The file problem4.mat contains three arrays X, Y, Z

that consist of 1000 realizations of each of these random variables. Form Zhat = alpha1*X +

alpha2*Y; and compute the sample MSE using mean((Zhat-Z).^2). How does it compare to
the value your function returned? Finally, does the MSE compare favorably with the variance
of Z?
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PROBLEM 3.5:
In this problem, we will develop the computational framework for approximating a continuous-time
signal on [0, 1] using scaled and shifted version of the classic bell-curve bump:

φ(t) = e−t
2
.

Fix an integer N > 0 and define φk(t) as

φk(t) = φ

(
t− (k − 1/2)/N

1/N

)
= φ (Nt− k + 1/2)

for k = 1, 2, . . . , N . The {φk(t)} are a basis for the subspace

TN = span {φk(t)}Nk=1 .

1. For a fixed value of N , we can plot all of the φk(t) on the same set of axes in MATLAB using:

phi = @(z) exp(-z.^2);

t = linspace(0, 1, 1000);

figure(1); clf

hold on

for kk = 1:N

plot(t, phi(N*t - kk + 1/2))

end

Do this for N = 10 and N = 25 and turn in your plots.

2. Since {φk(t)} is a basis for TN , we can write any y(t) ∈ TN as

y(t) =
N∑
k=1

akφk(t)

for some set of coefficients a1, . . . , aN ∈ RN . If these coefficients are stacked in an N -vector
a in MATLAB, we can plot y(t) using

t = linspace(0,1,1000);

y = zeros(size(t));

for jj = 1:N

y = y + a(jj)*phi(N*t - jj + 1/2);

end

plot(t, y)

Do this for N = 4, and a1 = 1, a2 = −1, a3 = 1, a4 = −1 and turn in your plot.

3. Define the continuous-time signal x(t) on [0, 1] as

x(t) =

{
0.5 0 ≤ t < 1/2

− sin(2πt) 1/2 ≤ t ≤ 1
.
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Write MATLAB code that finds the closest point x̂(t) in TN to x(t) for any fixed N . By
“closest point”, we mean that x̂(t) is the solution to

min
y∈TN

‖x(t)− y(t)‖L2([0,1]).

Turn in your code and two plots; one of which has x(t) and x̂(t) plotted on the same set of
axes for N = 10, and the other which has the same for N = 25.
Hint: You can create a function pointer for x(t) using

x = @(z) (z < 1/2).*1/2 - (z>=1/2).*sin(2*pi*z);

and then calculate the continuous-time inner product 〈x, φk〉 with

x_phik = @(z) x(z).*phi(N*z - jj + 1/2);

quad(x_phik, 0, 1)

You can use similar code to calculate the entries of the Gram matrix 〈φj , φk〉. (There is
actually a not-that-hard way to calculate the 〈φj , φk〉 analytically that you can derive if you
are feeling industrious — just think about what happens when you convolve a bump with
itself.)
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