Norms
Norms add the idea of length and distance and similarity to a vector space.

Definition: A norm $\|\cdot\|$ on a vector space S is a mapping: $\|\cdot\|: S \rightarrow \mathbb{R}$ with the following properties for $\underline{x}, \underline{y} \in S$

1. $\|\underline{x}\| \geqslant 0$ and $\|\underline{x}\|=0 \Leftrightarrow \underline{x}=0$
2. $\|\underline{x}+7\| \leq\|x\|+\|y\|$ (triangle inequality)
3. $\|a \cdot \underline{x}\|=|a| \cdot\|\underline{x}\|$ for any scaler a < absolute value

The length of $\underline{x} \in \int$ is $\|\underline{x}\|$
This distance between \underline{x} and z is $\|x-y\|$
A linear vector space with an associated norm is called a normed vector space.

Examples

1. $S=\mathbb{R}^{N}-l_{2}$ or Euclidean norm

$$
.1 .1-\left(<^{N} \ldots . .1^{2}\right)^{1 / 2}
$$

$$
\|\underline{x}\|_{2}=\left(\sum_{n=1}^{N}\left|x_{n}\right|^{2}\right)^{1 / 2}
$$

corresponds to energy or power
(whensqued)

$$
\|x-y\|_{2}=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
$$

2. $S=\mathbb{R}^{N}$

$$
\|\underline{x}\|_{1}=\sum_{n=1}^{N}\left|x_{n}\right|
$$

l, norm or "taxicab norm" or "Manhattan norm"
\qquad

$$
\|x-y\|_{1}=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

3. $S=\mathbb{R}^{N}$

$$
\|\underline{x}\|_{\infty}=\max _{n=1, \ldots, N}\left|x_{n}\right|
$$

The l_{∞} norm or "Cheby shew norm"

$$
\|\underline{x}-\underline{y}\|_{\infty}=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)
$$

4. $S=\mathbb{R}^{N}$

$$
\|\underline{x}\|_{p}=\left(\sum_{n=1}^{N}\left|x_{n}\right|^{p}\right)^{1 / p} \text { for some } 1 \leq p<\infty
$$

This is the l_{p}-norm

$$
\begin{equation*}
\ell_{2} \tag{1}
\end{equation*}
$$

approximating
$l_{2} Z$ average $l_{1}\left\{l_{\infty}\right.$

ℓ_{3} norm

5. $S=$ continuous -time signals on the real line

$$
\begin{aligned}
& \|x(t)\|_{2}=\left(\int_{-\infty}^{\infty}|x(t)|^{2} d t\right)^{1 / 2} \\
& L_{2} \text { norm }
\end{aligned}
$$

$\|x(t)\|_{2}^{2}$ is the energy in the signal
6. $S=$ cont.-time functions on $[a, b]$

$$
\|x(t)\|_{p}=\left(\int_{a}^{y}|x(t)|^{p} d t\right)^{1 / p}
$$

$$
\|x(t)\|_{p}=\left(\int_{a}|x(t)| d t\right)
$$

In a normed linear space, we say that

$$
\underline{x}=\underline{y} \text { if }\|\underline{x}-y\|=0
$$

for example in $L_{2}([a, b])$

then

$$
\|\underline{x}-\underline{y}\|_{2}=\left(\int_{a}^{b}|x(t)-y(t)|^{2} d t\right)^{1 / 2}=0
$$

$x(t)=y(t)$ if they differ at only a finite number of points

