The cosine transform is an alternative to the Fourier series - it is an orthobasis for $[0,1]$

1) The cosine transform bases and coefficients other intervals are real-valued (FS \rightarrow complex)
2) The basis functions have different symmetries

There are multiple different cosine transforms The discrete version of cosine-I (the DCT or DCT.I) is used in JPEG and MPEG compression.

The cosine-I basis functions for $t \in[0,1]$ are

$$
\Psi_{k}(t)= \begin{cases}1 & k=0 \\ \sqrt{2} \cos (\pi k t) & k=1,2, \ldots\end{cases}
$$

Let $x(t)$ be a signal on the interval $[0,1]$. Let $\tilde{x}(t)$ be its "reflected extension" on $[-1,1]$

$$
\tilde{x}(t)=\left\{\begin{array}{lr}
x(-t) & -1 \leq t \leq 0 \\
x(t) & 0 \leq t \leq 1
\end{array}\right.
$$

Cosine Transform cont.
wednesday, February 8,2017 9:31 AM
since $\tilde{x}(t)$ is real, we have $\alpha_{-k}=\bar{\alpha}_{k}$

$$
=\alpha_{0}+\sum_{k=1}^{\infty}\left(\bar{\alpha}_{k} e^{-i \pi k t}+\alpha_{k} e^{i \pi k t}\right)
$$

$$
\tilde{x}(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(\pi k t+\phi_{k}\right)
$$

$$
a_{0}=\alpha_{0}, \quad a_{k}=2 \operatorname{Re}\left\{\alpha_{k}\right\} \quad \phi_{k}=?
$$

since $\tilde{x}(t)$ is an even function, There is no imaginary component of α_{k} so $\phi_{k}=0$

This works for any symmetric $\tilde{x}(t)$ on $[-1,1]$ - we can create this from any $x(t)$ on $[a, 1]$.
Therefore, we have a mapping from $x(t)$ on $[0,1]$ to $\left\{a_{k}\right\}_{k=0}^{\infty}$

Cosine Transform cont.
Wednesday, February 8, 2017 9:43 AM
We can get our $\left\{a_{k}\right\}$'s for a given $x(t)$ on $[0.1]$ if we establish $\left\{\Psi_{k}(t)\right\}_{k=0}^{\infty}$ as an orthobasis.

$$
\left\langle\psi_{k}, \psi_{l}\right\rangle=2 \int_{0}^{1} \cos (\pi k t) \cos (\pi l t) d t= \begin{cases}1 & k=l \\ 0 & k \neq l\end{cases}
$$

One way of thinking about the cosine transform is that it is like an oversampled fourier series - we have frequencies spaced at multiples of π rather than 2π. Then we only take the real part.

Fourier transforms

Discrete Cosine Transform
Wednesday, February 8, 2017 9:50 AM
The DCT is analagous to The DFT. It is a sampled version of the cosine transform

The DCT basis functions

$$
\left.\begin{aligned}
& \Psi_{k}[n]= \begin{cases}\frac{1}{\sqrt{N}} & k=0 \\
\sqrt{\frac{2}{N}} \cos \left(\frac{\pi k}{N}\left(n+\frac{1}{2}\right)\right)\end{cases} \\
& k=1, \ldots, H-1
\end{aligned} \right\rvert\, c .
$$

notice, we use half sample points
$\left(n+\frac{1}{2}\right)$ instead of n in the expression above it turns out that this works best for compression We can compute the DCT using the FFT for fast computation.
2D-Cosine Transform
Definition: Let $\left\{\Psi_{k}(t)\right\}_{k \geqslant 0}$ be the cosine -I basis.
Set $\psi_{k_{1} k_{2}}^{2 D}(s, t)=\psi_{k_{1}}(s) \psi_{k_{2}}(t)$
Then $\left\{\psi_{k_{1} k_{2}}^{2 D}(s, t)\right\}_{k_{1}, k_{2} \in \mathbb{N}}$ is an orthonormal basis for $L_{2}\left([0,1]^{2}\right)$.

This is true in general, that if $\left\{\phi_{k}(t)\right\}$ is an orthobasis on $L_{2}([0,1])$ then $\phi_{k_{1} k_{2}}(s, t)=\phi_{k_{1}}(s) \phi_{k_{2}}(t)$ is an orthobasis on $L_{2}\left([0,1]^{2}\right)$

2-D Cosine Transform
Wednesday, February 8, 2017 10:16 AM

we need to show
that

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1}\left(\phi_{k_{1}, k_{2}}(s, t)\right)\left(\varphi_{k_{1}, l_{2}}(s, t)\right) d s d t \\
& = \begin{cases}1 & k_{1}=l_{1}, k_{2}=l_{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then we need to show that $\left\{\phi_{k_{1} k_{2}}(s, t)\right\}$ spans $[0,1]^{2}$... (part of H_{L} ")
step 1: show that the $\phi_{k, 1, k_{2}}(s, t)$ are orthonormal. -this pant is straight forward
a step 2: assuming that s is fined at $s=S_{0}$ so then we know

$$
\left.\begin{array}{cc}
5 & x \\
\leq & x \\
x & \vdots \\
5 & \vdots \\
0 & 4
\end{array} \right\rvert\,
$$

$$
\begin{aligned}
& x\left(s_{0}, t\right)=\sum_{k} \alpha_{k} \alpha_{k} \Psi_{k}(t) \\
& \text { function of our choice for s. } \\
& \alpha_{k}(s)
\end{aligned}
$$

step 3: fix k and decompose the $\alpha_{k}(s)$ is

Definition: Let $\left\{\psi_{1}[n]\right\}_{0 \leqslant k \leqslant N-1}$ be the DCT basis as described previously.

Set

$$
\Psi_{j, k}^{2 D}[m, n]=\Psi_{j}[m] \Psi_{k}[n]
$$

Then $\left\{\Psi_{j, k}^{20}[m, n]\right\}_{0 \leq j, k \leq N-1}$ is an orthonormal basis for $\mathbb{R}^{N} \times \mathbb{R}^{N}$.

used in JPEG and MPEG compression

The 2-D coefficient are indexed by two integers and so are naturally arranged on a grid as well:

$$
\begin{array}{ccccc}
\alpha_{0,0} & \alpha_{0,1} & \alpha_{02} & \ldots & \alpha_{0, N-1} \\
\alpha_{1,0} & \alpha_{1,1} & & \vdots \\
\vdots & & \ddots & \vdots \\
\alpha_{N-1,0} & & = & \ddots & \alpha_{N 1, N, 1}
\end{array}
$$

Image Compression
Monday, February 13, 2017 9:26 AM
JPEG - it is built around the DCT
\rightarrow for images, the DCT tends to concentrate energy in the low-frequency coefficients.
Basic operation

1) Divide the image into 8×8 blocks of pixels
2) Take the DCT of each block
3) Quantize the coefficients ~ the general effect is to keep large coefficients and discard small ones.
4) Losslessly compress/cncode the result.

The coeffients are read in the zig-zag pattern shown - JPEG does not just keep or kill coefficients, it quantizes them using a fined mask
$Q=\left[\begin{array}{cccccccc}16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99\end{array}\right]$.

$$
\tilde{\alpha}_{j, k}=Q_{j, k} \cdot \operatorname{round}\left(\frac{\alpha_{j, k}}{Q_{j, k}}\right)
$$

low freq.! horizontal!, vertical lines are more important.

Image Compression cont.
Monday, February 13, 2017

$$
\tilde{x}_{b}[m, n]=\sum_{k=0}^{7} \sum_{j=0}^{7} \tilde{\alpha}_{k, j} \psi_{k, j}[m, n] \quad \leftarrow \text { reconstruction }
$$

See slides on Color and JPEG for more details

