Cosine Transform IV
Monday, February 27, 2017 8:47 AM
Cosine -IV is different from, but related to the cosine- I transform that we have used

$$
\tilde{x}(t)=\left\{\begin{array}{lr}
-x(t+2) & -2 \leq t<1 \\
x(-t) & -1 \leq t<0 \\
x(t) & 0 \leq t \leq 1 \\
-x(2-t) & 1<t \leq 2
\end{array}\right.
$$

$\tilde{x}(t)$ has even symmetry around
$t=0$ and odd symmetry around $t=-1$ and $t=1$
even symmetry about $t=0$
every other term disappears because of odd symmetry about $t=1,-1$
$a_{k}=0$ for k even
Cosine - IV basis

$$
\psi_{k}(t)=\sqrt{2} \cos \left(\left(k+\frac{1}{2}\right) \pi t\right) \quad \text { for } \quad k=0,1,2, \ldots
$$

$\sum_{\substack{\text { make } \\ \text { orthonormal }}} \Psi_{k}(t)$ unit norm
\qquad

Discrete Cosine IV transform \& Block Transforms
Monday, February 27, 2017 9:21 AM

$$
\Psi_{k}[n]=\sqrt{\frac{2}{N}} \cos \left(\frac{\pi}{N}\left(k+\frac{1}{2}\right)\left(n+\frac{1}{2}\right)\right), \quad k=0,1, \ldots, N-1
$$

2 can be computed using a fast algorithm that uses the FFT

In general, we want to represent signals on arbitrarily long time intervals.
break the real line into intervals and build up each interval separately. (similar- to blocking in $J P E G$)
Suppose $\left\{\psi_{k}(t), k \geqslant 0\right\}$ is an orthobasis for $L_{2}([0,1]) \rightarrow$ Then for a fixed integer, n, $\left\{\psi_{k}(t-n), k \geqslant 0\right\}$ is an orthobasis for $L_{2}([n, n+1])$
Define $\psi_{n, k}(t)=\psi_{k}(t-n)$ then
$\left\{\psi_{n, k}(t), n \in \mathbb{Z}, k \geqslant 0\right\}$ is an orthobasis for $L_{2}(\mathbb{R})$

$$
x(t)=\sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty}\left\langle x(t), \psi_{n, k}(t)\right\rangle \psi_{n, k}(t)
$$

Block transform with coefficients

$$
\begin{aligned}
& \text { Block transform with coefficients. } \\
& \alpha_{n, k}=\left\langle x(t), \psi_{n, k}(t)\right\rangle^{\text {time index". "horizontal index." }} \text { "frequency index "vertical index" }
\end{aligned}
$$

DCT expansion coefficients
time \longrightarrow

What happens if we perturb the coefficients slightly? if we add ± 0.1 to the $k=0$ coefficients

Example

Discontinuities are bad perceptually very what to do.

Lapped Orthogonal Transform (LOT)
Monday, February 27,2017 9:51 AM
(also called the modified discrete cosine transform)
The LOT is a modified cosine-IV transform that breaks the signal into overlapping frames.
It essentially works by multiplying the signal by a smooth window function, and take the cosine transform of the result. The trick is maintaining orthogonality.

2. $g(t)=1$ for $1 / 4 \leq t \leq 3 / 4$
3. $g(t)$ is symmetric around $t=1 / 2$
4. $g(t)$ is monotonically increasing $-1 / 4 \leq t \leq 1 / 4$
5. $|g(t)|^{2}+|g(t-1)|^{2}=1$ for $3 / 4 \leq t \leq 5 / 4$ many signals obey these properties.
The one shown is

$$
\begin{aligned}
& \text { The one shown is } g(t)= \begin{cases}\sin \left(\frac{\pi}{2} \sin ^{2}\left(\pi\left(t+\frac{1}{4}\right)\right)\right) & -1 / 4 \leq t \leq 1 / 4 \\
1 & 1 / 4 \leq t \leq 3 / 4 \\
\sin \left(\frac{\pi}{2} \sin ^{2}\left(\pi\left(\frac{9}{4}-t\right)\right)\right) & 3 / 4 \leq t \leq 5 / 4\end{cases} \\
& \qquad \begin{array}{ll}
g(t-n), x_{2} \\
n=-2, \cdots-1
\end{array}
\end{aligned}
$$

LOT Basis
Monday, February 27, 2017 10:03 AM

$$
\phi_{n, k}(t)=g(t-n) \psi_{k}(t-n), \quad n \in \mathbb{Z}, k \geqslant 0
$$

where $\psi_{k}(t-n)=\sqrt{2} \cos \left(\pi\left(k+\frac{1}{2}\right)(t-n)\right)$
LOT basis functions

W
for $n=0$,

$$
k=0, \ldots, 15
$$

LOT Details
Monday, February 27, 2017 10:09 AM
Time-domain / Frequency -domain

$$
\begin{aligned}
& \phi_{n, k}(t) \\
& \operatorname{Time~}_{\text {domain }} ? \alpha_{k_{0}}(n)=\phi_{n, k_{0}}(t) \quad h[n] * \alpha_{k_{0}}(n) \\
& \underset{\substack{\text { domain } \\
\operatorname{dom}^{-} \text {? }}}{ } \beta_{n_{0}}(k)=\phi_{n_{0}, k}(t) \quad \beta_{n_{0}}(k) \cdot H(k)
\end{aligned}
$$

We need to show that for $x(t) \in L_{2}(\mathbb{R})$

$$
x(t)=\sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty}\left\langle x(t), \phi_{n, k}(t)\right\rangle \phi_{n, k}(t) \text {, for all }-\infty<t<\infty
$$

Q we showed/argued that this worked for $\psi_{n, k}(t)$ but not $\phi_{n, t}(t)$

$$
\left\langle x(t), \phi_{n, k}(t)\right\rangle=\int_{-\infty}^{\infty} x(t) \phi_{n, k}(t) d t=\int_{n-1 / 4}^{\phi_{n, k}(t)} x(t) g(t-n) \psi_{k}(t-n) d t
$$

$\psi_{k}(t)$ is the k II cosine -IV basis vector extended to

$$
t \in[-1 / 4,5 / 4]
$$

$$
\frac{\psi_{k}(t)=\sqrt{2} \cos \left(\left(k+\frac{1}{2}\right) \pi t\right) \text { for } k=0,1,2, \ldots}{\text { for LOT, we use } t \in[-1 / 4,5 / 4]}
$$

Recall That

$$
\begin{array}{r}
\psi_{k}(-t)=\psi(t), \quad \psi_{k}(t+1)=-\psi(-t+1) \\
\Uparrow \\
\psi_{k}(z-t)=\psi_{k}(t)
\end{array}
$$

LOT Details cont.
Wednesday, March 1,2017 9:09 AM
for $n=0$

$$
\left\langle x(t), \phi_{n, k}(t)\right\rangle=\int_{-1 / 4}^{5 / 4} x(t) g(t) \psi_{k}(t) d t=\text { for } n=0
$$

$$
\begin{equation*}
=\int_{0}^{1 / 4}(x(t) g(t)+x(-t) g(-t)) \psi_{k}(t) d t \tag{1}
\end{equation*}
$$

similarly for the last term

$$
\begin{equation*}
\int_{3 / 4}^{5 / 4} \ldots d t=\int_{3 / 4}^{1}(x(t) g(t)-x(2-t) g(2-t)) \psi_{k}(t) d t \tag{3}
\end{equation*}
$$

combining (1), (2), (3)

$$
\begin{array}{r}
\left\langle x(t), \phi_{0, k}(t)\right\rangle=\int_{0}^{1} z_{0}(t) \psi_{k}(t) d t \\
z_{0}(t)= \begin{cases}x(t) g(t)+x(-t) g(-t) & 0 \leq t \leq 1 / 1 \\
x(t) & 1 / 4 \leq t \leq 3 / 4 \\
x(t) g(t)-x(2-t) g(2-t) & 3 / 4 \leq t \leq 1\end{cases}
\end{array}
$$

since $\left\{\psi_{k}(t)\right\}_{k}$ form an orthobasis for $[0,1]$, then for frame $n=0$

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left\langle x(t), \phi_{0, k}(k)\right\rangle \phi_{0, k}(t)=\sum_{k=0}^{\infty}\left\langle z_{0}(t), w_{k}(t)\right\rangle_{L_{2}[0,1]} g(t) \psi_{k}(t) \\
& \text { none tron sin) }=g(t)\left(\sum_{k=0}^{\infty}\left\langle z_{0}, \psi_{k}\right\rangle_{L_{2}[0,1]} \psi_{k}(t)\right) \text { defined on }[-2,2]
\end{aligned}
$$

$=g(t) z_{0}(t)$ for $t \in[0,1]$ the sum reproduces $z_{0}(t)$ on the entire internal $[-1 / 4,5 / 4]$

LOT Details III
Wednesday, March 1, 2017 9:26 AM

$$
\sum_{k=0}^{\infty}\left\langle x(t), \phi_{0, k}(t)\right\rangle \phi_{0, k}(t)=g(t) z_{0}(t) \text { for } t \in[-1 / 4,5 / 4]
$$

repeating for $n=1$
extended synthesis

$$
\begin{aligned}
& \text { interval. } \\
& \sum_{k=0}^{\infty}\left\langle x(t), \phi_{1, k}(t)\right\rangle \phi_{1, k}(t)=g(t-1) z_{1}(t) \quad \text { interval } \quad \text { for } t \in\left[\frac{3}{4}, \frac{9}{4}\right] \\
& \text { where } \\
& z_{1}(t)= \begin{cases}x(t) g(t-1)+x(2-t) g(1-t) & 3 / 4 \leq t \leq 5 / 4 \\
x(t) & 5 / 4 \leq t \leq 7 / 4 \\
x(t) g(t-1)-x(4-t) g(3-t) & 7 / 4 \leq t \leq 9 / 4\end{cases}
\end{aligned}
$$

and for $n=-1$

$$
\sum_{k=0}^{\infty}\left\langle x(t), \phi_{-1, k}(t)\right\rangle \varnothing_{-1, k}(t)=g(t+1) z_{1}(t) \text { for } t \in\left[\frac{-5}{4}, 1 / 4\right]
$$

Where

$$
z_{-1}(t)= \begin{cases}x(t) g(t+1)+x(-2-t) g(-t-1) & -5 / 4 \leq t \leq-3 / 4 \\ x(t) & -3 / 4 \leq t \leq-1 / 4 \\ x(t) g(t+1)-x(-t) g(1-t) & -1 / 4 \leq t \leq 1 / 4\end{cases}
$$

adding these together

$$
z_{-1}(t) g(t+1)+z_{0}(t) g(t)+z_{1}(t) g(t-1)=x(t)
$$

for $t \in[-1 / 4,1 / 4]$
true for the highlighted intervals above

$$
\begin{aligned}
& \begin{array}{l}
g(t+1) z_{-1}(t)+g(t) z_{0}(t)= \\
\quad g^{2}(t+1) x(t)-x(-t) g(1-t) g(t+1)+ \\
\\
g^{2}(t)+g^{2}(t)+x(-t) g(t) g(-t) \\
g(t)=g(1-t) \text { and } \\
g(t)+0 \\
g(-t)=g(t+1)
\end{array}, \$ \text { (t) }
\end{aligned}
$$

The same holds true for all overlapping regions

$$
\begin{aligned}
& \text { Lore basis } \\
& \sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty}\left\langle x(t), \phi_{n, k}(t)\right\rangle \phi_{n, t}(t)=\sum_{n=-\infty}^{\infty} g(t-n) z_{n}(t)=x(t) \\
& \forall t \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& g(t-n) z_{n}(t), n=-2, \ldots, 2 \\
& \sum_{n=2}^{2} g(t-n) z_{n}(t) \\
& \text { (1.5 }
\end{aligned}
$$

