Linear Inverse Problems
Monday, March 13, 2017

This is called a linear inverse problem.
We can think of y as containing different indirect observations or measurements

$$
y=\left[\begin{array}{cl}
\langle\underline{x}, & \left.a_{1}\right\rangle \\
\left\langle\underline{x}, a_{2}\right\rangle \\
\vdots \\
\left\langle\underline{x}, a_{m}\right\rangle
\end{array}\right] \quad \begin{array}{ll}
\text { where } a^{\top} \text { is the } m \text { th } \\
\text { row of } A \\
& \left(a^{H} \text { if } A \text { is complex }\right)
\end{array}
$$

We can have $M>N, M=N$, or $M \angle N$

$$
\begin{aligned}
& \text { more observations than } \begin{array}{l}
\text { I } \\
\text { unknowns observations } \\
\end{array} \quad=\text { of unknowns }
\end{aligned}
$$

$$
=\# \text { of unknowns }
$$

If $M=N$ and A^{-1} exists then
$\underline{x}=A^{-1} y \quad z$ in genera, it is never this easy

- examples -

Deconvolution - e.g. deblurring, digital $Y(\Omega)=H(\Omega) X(\Omega)$
 communications $X(\Omega)=\frac{1}{H(\Omega)} Y(\Omega)$ 4 danger!
we know $h(t)$ us more on this later

$$
y(t)=\int_{-\infty}^{\infty} h(t-\tau) f(\tau) d \tau
$$

Linear Inverse applied to Continuous Time

$$
y(t)=\int_{-\infty}^{\infty} h(t-\tau) f(\tau) d \tau
$$

If $f(t)$ is time-limited then we can write
$f(t)=\sum_{n} x(n) \psi_{n}(t)$ where $\left\{\psi_{n}(t)\right\}_{n}$ forms an orthobasis on a finite interval! for $L_{2}([0, T])$

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(t-\tau) \sum_{n} x(n) \psi_{n}(\tau) d \tau \\
& =\sum_{n} x(n) \int_{-\infty}^{\infty} h(t-\tau) \psi_{n}(\tau) d \tau
\end{aligned}
$$

a set of coefficients \rightarrow function of time and of n.
Generally we observe samples in time of $y(t)$. Suppose we have M observations taken at times $t=t_{1}, t_{2}, \ldots, t_{M} \quad \tau$ These can be arbitrary

$$
\begin{aligned}
& y[m] \equiv y\left(t_{m}\right)=\sum_{n} x(n)\left(\int_{-\infty}^{\infty} h\left(t_{m}-\tau\right) \psi_{n}(\tau) d \tau\right)^{\text {arbiter }} \\
& y[m]=\sum_{n} A[m, n] x[n]
\end{aligned}
$$

where $A[m, n]=\int_{-\infty} h\left(t_{m}-\tau\right) \psi_{n}(\tau) d \tau$

$$
=\left\langle\underline{h}_{m}, \underline{\psi}_{n}\right\rangle
$$

where

$$
h_{m}(t)=h\left(t_{m}-t\right)
$$

$$
y=A \underline{x}
$$

$$
\hat{f}(t)=\sum_{n=1}^{N} \hat{x}(n) \psi_{n}(t)
$$

Solving Linear Inverse Equations
We will start with the simplest cases
A is $N \times M$ and symmetric (or Hermitian tor complex A)
Definition: If A is real-valued, then we call it symmetric if $A^{\top}=A$
$(A[m, n]=A[n, m]$ for all $m, n=1, \ldots, N)$

$$
\text { example }\left[\begin{array}{ccc}
1 & 3 & 7 \\
3 & -5 & -2 \\
7 & -2 & 6
\end{array}\right]
$$

Definition: If A is complex valued, we call it Hermitian if $A^{\mu}=A$.

$$
\begin{aligned}
& A^{H}=A . \\
& (A[m, n]=\overline{A[n, m]}) \quad \text { example } \quad\left[\begin{array}{ccc}
1 & 3+i^{2} & 1-j^{3} \\
3-i 3 & -5 & 4 \\
1+i 3 & 4 & -6
\end{array}\right]
\end{aligned}
$$

We will work up to non-symmetric and non-square...
Eigenvalue decompositions of symmetric matrices
Definition: An eigenvector of an $N \times N$ matrix is a vector v such that

$$
A \underline{v}=\lambda \underline{v}
$$

for some $\lambda \in \mathbb{C}$. The scalar λ is called an eigenvalue associated with v
examples: $\quad(A-\lambda I) \underline{v}=0$
matlab
we can use this to find λ. cig (A)

$$
\operatorname{det}(A-\lambda I)=0 \quad \text { "charaderstin" }=0 \text { solve the equation to find } \lambda
$$

Eigenvalue Decompositions
Monday, March 13, 2017 9:51 AM
Suppose that the matrix A has N linearly-independent eigenvectors $\underline{v}_{1}, \ldots, V_{M}$

$$
\begin{gathered}
A v_{1}=\lambda, v_{1} \\
A v_{2}=\lambda_{2} v_{2} \\
\vdots \\
\vdots \\
A v_{N}=\lambda_{N} v_{N}
\end{gathered}
$$

$A V=V \Lambda \quad$ if the $\underline{v}_{i}^{\prime s}$ are linearly independent

$$
A=V \Lambda V^{-1} \Leftrightarrow \Lambda=V^{-1} A V
$$

This does not work for all matrices! But, it does work for all symmetric matrices.

Cs comes from the Schur Triangularity Lemma - any $N_{x} N$ matrix is unitarily similar to an upper-triangular matrix. That is, for a given $B \in \mathbb{C}^{N \times N}$ there is an orthormal matrix V such that

$$
B=V \Delta_{v} V^{H}
$$

where

$$
\Delta=\left[\begin{array}{cccc}
\Delta[1,1] & \Delta[1,2] & \cdots & \Delta\left[{ }^{1}, N\right] \\
& \Delta[2,2] & & \vdots \\
& & & \Delta[N, N]
\end{array}\right]
$$

If B is Hermitian the $B=B^{H}$ implies

$$
V \Delta V^{H}=\left(V \Delta V^{H}\right)^{H}=V \Delta^{H} V^{H}
$$

so $\Delta=\Delta^{H} \rightarrow$ since it is upper triangular, it must be diagonal and real.

$$
\Delta=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & \\
0^{2} & \ddots & \lambda_{N}
\end{array}\right], \lambda_{n} \in \mathbb{R}
$$

If $B \in \mathbb{R}^{N_{N} N}$ and symmetric, it is also Hermitian so any real, symmetric or complex Hermitian matrix is diagonalizable.

Note that $V^{H}=V^{-1}$ The eigenvector matrices contain or tho columns.

Recall $\quad \underline{v}_{n}=\lambda_{n} \underline{v}_{n} \quad \Rightarrow$ let $\underline{u}_{n}=\alpha \underline{v}_{n}$
then $A u_{n}=\alpha A v_{n}=\alpha \lambda_{n} v_{n}=\lambda_{n} u_{n}$
thus, we can normalize our eigenvectors
Other properties
An $N_{\times} N$ symmetric/Hermitian matrix A has:

- Real eigenvalues (even if A is complex) $\lambda_{1}, \ldots, \lambda_{N}$
- N orthogonal eigenvectors.

$$
\underline{v}_{1}, \ldots, \underline{v}_{N}
$$

- If $A \in \mathbb{R}^{N_{*} N}$, Then \underline{V}_{n} can be chosen to be real-valued

$$
A=V \Omega V^{H}=\sum_{n=1}^{N} \lambda_{n} \underline{V}_{n} V_{n}^{H}
$$

Matrix Spectral Decomposition
Monday, March 13, 2017 10:19 AM
A is a sum of outer products $\left(V_{n} v_{n}^{\prime \prime}\right)$'s weighted by λ_{n} 's

$$
A=\sum_{n=1}^{N} \lambda_{n} v_{n} v_{n}^{H}=\sum_{n=1}^{N} \lambda_{n} v_{n} v_{n}^{\top}
$$

if A real
This is often called the spectral decomposition of A

Technical details: Schur decomposition

In this section we prove one of the fundamental results in linear algebra: that any $N \times N$ matrix is unitarily similar to an uppertriangular matrix. That is, given an $N \times N$ matrix \boldsymbol{A}, there is an orthonormal matrix \boldsymbol{V} (meaning $\boldsymbol{V}^{\mathrm{H}} \boldsymbol{V}=\mathbf{I}$) such that

$$
\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Delta} \boldsymbol{V}^{\mathrm{H}}
$$

where

$$
\boldsymbol{\Delta}=\left[\begin{array}{cccc}
\Delta[1,1] & \Delta[1,2] & \cdots & \Delta[1, N] \\
0 & \Delta[2,2] & \cdots & \Delta[2, N] \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \Delta[N, N]
\end{array}\right] .
$$

This is known as the Schur Decomposition or the Schur Triangulation. It is also possible to choose \boldsymbol{V} so that $\boldsymbol{\Delta}$ is lowertriangular.
The proof works by induction. First, we use the fact that every matrix has at least one eigenvector. Let \boldsymbol{v}_{1} be an eigenvector of $\boldsymbol{A} ;$ we may assume that \boldsymbol{v}_{1} is normalized, since all scalar multiples of eigenvectors are also eigenvectors. Then we take \boldsymbol{V}_{1} to be any orthogonal matrix with \boldsymbol{v}_{1} as one of its columns:

$$
\boldsymbol{V}_{1}=\left[\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{U}_{1}
\end{array}\right], \quad \boldsymbol{U}_{1} \in \mathbb{R}^{N \times N-1}, \quad \boldsymbol{U}_{1}^{\mathrm{H}} \boldsymbol{U}_{1}=\mathbf{I}, \quad \boldsymbol{U}_{1}^{\mathrm{H}} \boldsymbol{v}_{1}=\mathbf{0} .
$$

This is equivalent to finding an orthobasis for \mathbb{R}^{N} where \boldsymbol{v}_{1} is one of the basis vectors and the $N-1$ columns of \boldsymbol{U}_{1} are the others. There are many such choices for \boldsymbol{U}_{1}; one can be found using the Gram-Schmidt algorithm.
Since \boldsymbol{v}_{1} is an eigenvector of \boldsymbol{A} (call the corresponding eigenvalue λ_{1}),

$$
\boldsymbol{A} \boldsymbol{V}_{1}=\left[\begin{array}{ll}
\lambda_{1} \boldsymbol{v}_{1} & \boldsymbol{A} \boldsymbol{U}_{1}
\end{array}\right]
$$

Schur decomposition notes

and

$$
\boldsymbol{V}_{1}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{V}_{1}=\left[\begin{array}{cc}
\lambda_{1} & \\
0 & \\
\vdots & \boldsymbol{V}_{1}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{U}_{1} \\
\vdots & \\
0 &
\end{array}\right]
$$

Now suppose we have an $N \times N$ matrix of the form

$$
\boldsymbol{A}_{p}=\left[\begin{array}{cc}
\boldsymbol{\Delta}_{p} & \boldsymbol{W}_{p} \tag{1}\\
\mathbf{0} & \boldsymbol{M}_{p}
\end{array}\right]
$$

where $\boldsymbol{\Delta}_{p}$ is a $p \times p$ upper-triangular matrix, \boldsymbol{W}_{p} is an arbitrary $p \times(N-p)$ matrix, and \boldsymbol{M}_{p} is an arbitrary $(N-p) \times(N-p)$ square matrix. Now let \boldsymbol{v}_{p+1} be an eigenvector of \boldsymbol{M}_{p} with corresponding eigenvalue λ_{p+1}, and let \boldsymbol{U}_{p+1} be an $(N-p) \times(N-p-1)$ matrix such that

$$
\boldsymbol{Z}_{p+1}=\left[\begin{array}{ll}
\boldsymbol{v}_{p+1} & \boldsymbol{U}_{p+1}
\end{array}\right]
$$

is a $(N-p) \times(N-p)$ orthonormal matrix. Set

$$
\boldsymbol{V}_{p+1}=\left[\begin{array}{cc}
\mathbf{I}_{p} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{Z}_{p+1}
\end{array}\right]
$$

where \mathbf{I}_{p} is the $p \times p$ identity matrix. It should be clear that \boldsymbol{V}_{p+1} is an orthonormal matrix. Applying \boldsymbol{V}_{p+1} to the right of \boldsymbol{A}_{p} yields

$$
\boldsymbol{A}_{p} \boldsymbol{V}_{p+1}=\left[\begin{array}{cc}
\boldsymbol{\Delta}_{p} & \boldsymbol{W}_{p} \boldsymbol{Z}_{p+1} \\
\mathbf{0} & {\left[\lambda_{p+1} \boldsymbol{v}_{p+1}\right.} \\
\boldsymbol{M}_{p} \boldsymbol{U}_{p+1}
\end{array}\right],
$$

and so

$$
\boldsymbol{V}_{p+1}^{\mathrm{H}} \boldsymbol{A}_{p} \boldsymbol{V}_{p+1}=\left[\begin{array}{c}
\boldsymbol{\Delta}_{p} \\
\\
\mathbf{0}\left[\begin{array}{cc}
\lambda_{p+1} & \boldsymbol{W}_{p} \boldsymbol{Z}_{p+1} \\
0 & \\
\vdots & \boldsymbol{Z}_{p+1}^{\mathrm{H}} \boldsymbol{M}_{p} \boldsymbol{U}_{p+1} \\
\vdots & \\
0 &
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{\Delta}_{p+1} & \boldsymbol{W}_{p+1} \\
\mathbf{0} & \boldsymbol{M}_{p+1}
\end{array}\right], ~
\end{array}\right.
$$

Schur decomposition notes

where $\boldsymbol{\Delta}_{p+1}$ is a $(p+1) \times(p+1)$ upper-triangular matrix, and \boldsymbol{W}_{p+1} and \boldsymbol{M}_{p+1} are arbitrary $(p+1) \times(N-p-1)$ and $(N-p-1) \times$ ($N-p-1$) matrices, respectively.
Given an arbitrary \boldsymbol{A},

$$
\boldsymbol{A}_{p}=\boldsymbol{V}_{p-1}^{\mathrm{H}} \cdots \boldsymbol{V}_{2}^{\mathrm{H}} \boldsymbol{V}_{1}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{V}_{1} \boldsymbol{V}_{2} \cdots \boldsymbol{V}_{p-1}
$$

will have the form (1). Applying the construction over N iterations gives

$$
\boldsymbol{\Delta}=\boldsymbol{V}_{N}^{\mathrm{H}} \cdots \boldsymbol{V}_{2}^{\mathrm{H}} \boldsymbol{V}_{1}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{V}_{1} \boldsymbol{V}_{2} \cdots \boldsymbol{V}_{N},
$$

which will be upper-triangular. Since each of the \boldsymbol{V}_{p} are orthonormal, $\boldsymbol{V}:=\boldsymbol{V}_{1} \boldsymbol{V}_{2} \cdots \boldsymbol{V}_{N}$ will also be orthonormal. Thus

$$
\boldsymbol{\Delta}=\boldsymbol{V}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{V} \quad \Leftrightarrow \quad \boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Delta} \boldsymbol{V}^{\mathrm{H}}
$$

where $\boldsymbol{\Delta}$ is upper-triangular and $\boldsymbol{V}^{\mathrm{H}} \boldsymbol{V}=\mathbf{I}$.

Eigenvalues of \boldsymbol{A}

The diagonal entries of the matrix $\boldsymbol{\Delta}$ will contain the λ_{p} used in the construction above (which we might recall are the eigenvalues of the submatrices \boldsymbol{M}_{p}):

$$
\Delta[p, p]=\lambda_{p} .
$$

We can see now that the λ_{p} are also eigenvalues of \boldsymbol{A}. Since $\boldsymbol{\Delta}$ is triangular, its diagonal entries $\lambda_{1}, \ldots, \lambda_{N}$ are its eigenvalues. If \boldsymbol{x}_{p} is the eigenvector of $\boldsymbol{\Delta}$ corresponding to λ_{p}, then taking $\boldsymbol{y}_{p}=\boldsymbol{V} \boldsymbol{x}_{p}$ we have

$$
\boldsymbol{A} \boldsymbol{y}_{p}=\boldsymbol{V} \boldsymbol{\Delta} \boldsymbol{V}^{\mathrm{H}} \boldsymbol{V} \boldsymbol{x}_{p}=\boldsymbol{V} \boldsymbol{\Delta} \boldsymbol{x}_{p}=\lambda_{p} \boldsymbol{V} \boldsymbol{x}_{p}=\lambda_{p} \boldsymbol{y}_{p},
$$

and so the $\lambda_{1}, \ldots, \lambda_{N}$ are eigenvalues of \boldsymbol{A} as well.

Schur decomposition notes

Real-valued decompositions

If \boldsymbol{A} is real-valued but non-symmetric, then both \boldsymbol{V} and $\boldsymbol{\Delta}$ can be complex-valued. However, there does real-valued \boldsymbol{U} and $\boldsymbol{\Upsilon}$ such that

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Upsilon} \boldsymbol{U}^{\mathrm{T}}
$$

where \boldsymbol{U} is orthonormal, $\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=\mathbf{I}$, and Υ is almost upper-triangular:

$$
\mathbf{\Upsilon}=\left[\begin{array}{cccc}
\boldsymbol{\Lambda}_{1} & * & \cdots & * \\
0 & \boldsymbol{\Lambda}_{2} & \cdots & * \\
\vdots & & \ddots & \vdots \\
0 & \cdots & \cdots & \boldsymbol{\Lambda}_{K}
\end{array}\right]
$$

The $\boldsymbol{\Lambda}_{p}$ above are either 2×2 matrices or scalars; there is a 2×2 block for every pair of complex-conjugate eigenvalues of \boldsymbol{A}, and a scalar for every real eigenvalue. Although this decomposition is not strictly upper-triangular, it carries many of the same advantages. For example, with \boldsymbol{U} pre-computed and given a $\boldsymbol{b} \in \mathbb{R}^{N}$, we can still compute the solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ with $O\left(N^{2}\right)$ operations.

Symmetric PD Matrices cont.
Monday, March 20,2017 9:02 AM
In-class attendance quiz.
Find the eigenvalue's of $\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$
Hint: $\quad(A-I \lambda) v=0$

- so (this) is singular

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)= & (3-\lambda)(2-\lambda)-1=0 \\
& 6-5 \lambda+\lambda^{2}-1=0 \\
& \lambda^{2}-5 \lambda+5=0
\end{aligned} \longrightarrow \lambda=\frac{5 \pm \sqrt{25}}{2}
$$

How to find eigenvectors?

$$
\begin{aligned}
& A v_{1}=\lambda_{1} v_{1} \\
& \left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)\binom{v_{11}}{v_{12}}=\lambda_{1}\binom{v_{11}}{v_{12}} \leftarrow \text { solve } 2 \text { eq., } 2 \text { unknowns }
\end{aligned}
$$

or use erg (A) in matlab

An $N_{x} N$ symmetric/Hermition matrix A has.

- Real eigenvalues, $\lambda_{1}, \ldots, \lambda_{N}$ (even for complex)
- N orthogonal eigenvectors, V_{1}, \ldots, V_{N}
- If A is real-ualued, then V_{n} can be chosen to be realualued

We can decompose real-valued A as

$$
\begin{equation*}
A=V \wedge V^{\top}=\sum_{n=1}^{N} \lambda_{n} V_{n} V_{n}^{\top} \tag{3}
\end{equation*}
$$

eigenvectors as

$$
A x=(\text { inverse } V \text { transform }) \text { (pointwise multiply). }
$$

$$
\begin{equation*}
\frac{(V \text { transtorm)x}}{1} \tag{2}
\end{equation*}
$$

Symmetric PD matrices cont.
Monday, March 20,2017 9:28 AM
Definition: a symmetric matrix A is called positive definite if it has positive eigenvalues

$$
\lambda_{n}>0 \text { for } n=1, \ldots, \lambda^{\prime}
$$

we call it positive semi-definite if $\lambda_{n} \geqslant 0$ for $n=1, \ldots, N$
We typically assume that

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \ldots \geqslant \lambda_{N}
$$

Example

$$
\begin{aligned}
A=\frac{1}{2}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \quad \Rightarrow v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1} & v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1} \\
\lambda_{1}=2 & \lambda_{2}=1
\end{aligned}
$$

$$
\begin{aligned}
A x & =V_{-} \Lambda V^{\top} x \quad \text { suppose } x=\alpha_{1} v_{1}+\alpha_{2} v_{2} \\
& =\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\top} \\
v_{2}^{\top}
\end{array}\right]\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right) \\
& =\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{l}
2 \alpha_{1} \\
\alpha_{2}
\end{array}\right] \quad \text { An for }{ }^{\text {ald }} \| x=1
\end{aligned}
$$

for sym + def (symmetric positive definite) A,

$$
\max _{x \in \mathbb{R}^{N}} \frac{x^{\top} A x}{\|x\|_{2}^{2}}=\max _{\substack{x \in \mathbb{R}^{\prime \prime} \\\|x\|_{2}=1}} x^{\top} A x=\lambda_{1} \quad \text { largest eigenvalue }
$$

$$
\min _{x \in \mathbb{R}^{N}} \frac{x^{\top} A x}{\|x\|_{2}^{2}}=\min _{\substack{x \in \mathbb{R}^{N} \\ \\\|x\|_{2}=1}} x^{\top} A_{x}=\lambda_{N} \quad \text { smallost eigenvalue }
$$

$$
\max _{x \in \mathbb{R}^{N}} x^{\top} A x=\max _{\ldots} x^{\top} V \Lambda V^{\top} x=\max _{y \in \mathbb{R}^{N}} y^{\top} \Lambda_{\| y} y=\max _{\|y\|_{2}=1} \sum(y[n])^{2} \lambda_{n}
$$

$\|x\|_{2}=1 \quad \cdots \quad$ where $\| x, y=V^{\top} \underline{x}$
maxi "zed when

$$
\left\{\begin{array}{l}
y[1]=1, \\
y[k]=0 \text { for } k \neq 1
\end{array}\right.
$$

solving equations
If $y=A x \quad$ and A is sym+def., then

$$
\begin{aligned}
& \quad x=A^{-1} y \\
& x=V \Lambda^{-1} V^{\top} y \\
& x=\sum_{n=1}^{N} \frac{1}{\lambda_{n}}\left\langle y, v_{n}\right\rangle v_{n}
\end{aligned}
$$

(once we have the $\lambda_{n}^{\prime} s$ and $v_{n} ' s$,
The solution becomes a matrix multiply E.genvalues/eigenvectors of A^{-1} ? if A is sym+ def then

$$
\begin{gathered}
A v_{n}=\lambda_{n} v_{n}=v_{n}=\lambda_{n} A^{-1} v_{n} \\
A^{-1} v_{n}=\frac{1}{\lambda_{n}} v_{n}
\end{gathered}
$$

The eigenvalues are $\left\{\frac{1}{\lambda_{N}}, \frac{1}{\lambda_{N-1}}, \ldots, \frac{1}{\lambda_{0}}\right\}$ eigenvectors are v_{N}, \ldots, v, and sum of vectors.

Now suppose we have some observation error

$$
\begin{aligned}
& y=A \underline{x}+\underline{e} \underbrace{y}_{\text {unknown error vector in }} \\
& \tilde{x}=A^{-1} y=A^{-1}(A x+e)=x+A^{-1} e
\end{aligned}
$$

The error in our solution is

$$
\underline{\tilde{x}} \underline{x}=A^{-1} \underline{e}
$$

suppose $\|e\|_{2}=0.001$, what does $A^{-1} e$ look like?
what is the largest eigenvalue of A^{-1} ? $\quad 1 / \lambda_{N}$
The error could be amplified by as much as $1 / \lambda_{N}$ If $\lambda_{N}=10^{-5}$, the error in \tilde{x} is (for our example)

$$
100 \mathrm{e}
$$

example, A blurs rows of an image. Then There is some noise added from the sensor
\&bluring \quad operation $((\square))$ \&picture with shaky camera

$$
y=A x+e^{o p}
$$

image pine row
a blurring has a lowpass effect

note, as the dimensionality of A increases, the smallest and largest eigenvalues tend toward the spectral min it max respectively. (more details later)

$$
\frac{1}{\lambda_{1}^{2}}\|e\|_{2}^{2} \leq\|\tilde{x}-x\|_{2}^{2} \leq \frac{1}{\lambda_{N}^{2}}\|e\|_{2}^{2}
$$

\uparrow^{\uparrow} best case
worst case
average reconstruction error?
we will assume that the entries \underline{e} are random, lid
Gaussian

$$
\begin{aligned}
& e[n] \sim \operatorname{Normal}\left(0, \sigma^{2}\right) \quad n=1, \ldots, N \\
& E\{e[n] e[l]\}= \begin{cases}\sigma^{2} & n=l \\
0 & n \neq l\end{cases} \\
& E\left\{\|e\|_{2}^{2}\right\}=E\left\{\sum_{n=1}^{N}|e[n]|^{2}\right\} \\
& =\sum_{n=1}^{N} E\left\{e^{2}[n]\right\}=\sum_{n=1}^{N} \sigma^{2} \\
& E\left\{\|e\|_{2}^{2}\right\}=N \sigma^{2} \\
& E\left\{\left\|A^{-1} e\right\|_{2}^{2}\right\}=E\left\{\left\langle V \Lambda^{-1} V^{\top} e, V \Lambda^{-1} V^{\top} e\right\rangle\right\} \\
& \left(v \Lambda^{-1} v^{\top} e\right)^{\top}\left(v \Lambda_{-}^{-1} v^{\top} e\right) \\
& =E\left\{\left\langle\Lambda^{-1} V^{\top} e, V^{\top} V_{-} \Lambda^{-1} V^{\top} e\right\rangle\right\} \quad\left(e^{\top} V_{-} \Lambda_{-}^{-1}\right) V^{\top} \not \forall\left(\Lambda_{-}^{-1} V^{\top} e\right) \\
& =E\left\{\sum_{n=1}^{N}\left|\frac{1}{\lambda_{N}}\left\langle e, v_{n}\right\rangle\right|^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m=1}^{N} \sum_{l=1}^{N} v_{n}[m] e[m] v_{n}[l] e[l] \\
& E\left\{\binom{6}{6}\right\}=\sum_{m} \sum_{l} v_{n}[m] V_{n}[l] E\{\text { en] } \quad 0 \text { except } m=l \\
& =\sum_{m}\left|v_{n}[m]\right|^{2} \sigma^{2}=\sigma^{2}
\end{aligned}
$$

