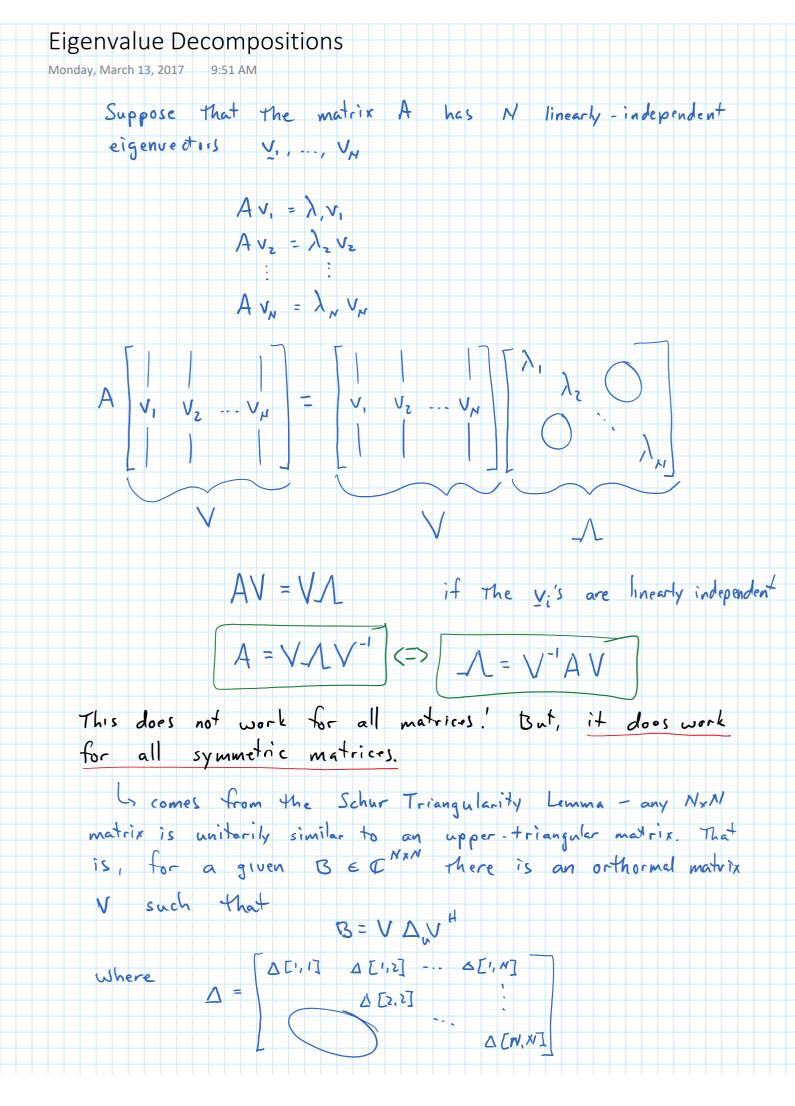
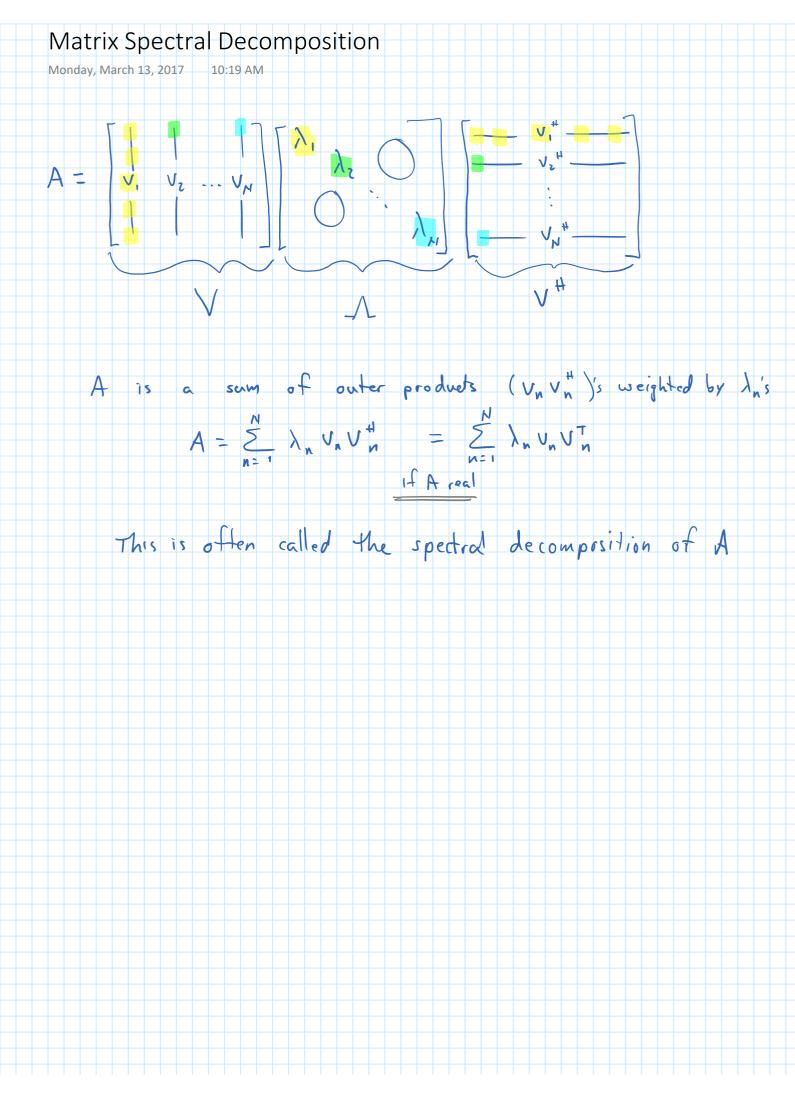


Solving Linear Inverse Equations Monday, March 13, 2017 9:37 AM
We will start with the simplest cases
A is NxN and symmetric (or Hermitian to-
Definition: If A is real-valued, then we call it Symmetric if AT = A
(A[m,n] = A[n,m] for all m,n = 1,, ~)
example [3 7]
Definition: If A is complex valued, we call it Hermitian
$[if A^{H} = A]$ $(A [m,n] = A [n,m])$ $example 3-i3 -5$ $(1+j^{3})$ $(1+j^{3})$ $(1+j^{3})$
We will work up to non-symmetric and non-square
Eigenvalue de compositions of symmetric matrices
Definition: An eigenvector of an NxN matrix is a vector v such that
$Av = \lambda v$ for some $\lambda \in C$. The scalar λ is called an
for some $\lambda \in \mathbb{C}$. The scalar λ is called an eigenvalue associated with γ
examples: $(A - \lambda I) v = 0$
watlab $\det(A-\lambda I)=0$ "characteristic" eig (A) — solve the regulation to find λ



Diagonalization Monday, March 13, 2017 B is Hermitian the B: BH implies $V\Delta V^{\mu} = (V\Delta V^{\mu})^{\mu} = V\Delta^{\mu}V^{\mu}$ a = at -> since it is upper triangular, it must be diagonal and real. $\Delta = \begin{vmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_N \end{vmatrix}, \quad \lambda_n \in \mathbb{R}$ If BE IR NaM and symmetric, it is also Hermitian so any real, symmetric or complex Hermitian matrix is diagonalizable. Note that V = V - The eigenvector matrices contain ortho columns. Recall Aun = Inyn => let un = x un Then Aun = a Avn = a lnvn = lnun thus, we can normalize our eigenvectors Other properties An NxM symmetric/Hermitian matrix A has: · Real eigenvalues (even if A is complex) 1, ..., 1 · N orthogonal eigenvectors. . If $A \in \mathbb{R}^{N \times N}$, Then V_n can be chosen to be recl-valued $A = V \wedge V^{\mu} = \sum_{n=1}^{N} \lambda_n \vee_n \vee_n^{\mu}$



Technical details: Schur decomposition

In this section we prove one of the fundamental results in linear algebra: that any $N \times N$ matrix is *unitarily similar* to an upper-triangular matrix. That is, given an $N \times N$ matrix \boldsymbol{A} , there is an orthonormal matrix \boldsymbol{V} (meaning $\boldsymbol{V}^{\mathrm{H}}\boldsymbol{V} = \mathbf{I}$) such that

$$A = V\Delta V^{\mathrm{H}}$$
.

where

$$\boldsymbol{\Delta} = \begin{bmatrix} \Delta[1,1] & \Delta[1,2] & \cdots & \Delta[1,N] \\ 0 & \Delta[2,2] & \cdots & \Delta[2,N] \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \Delta[N,N] \end{bmatrix}.$$

This is known as the **Schur Decomposition** or the **Schur Triangulation**. It is also possible to choose V so that Δ is lower-triangular.

The proof works by induction. First, we use the fact that every matrix has at least one eigenvector. Let \mathbf{v}_1 be an eigenvector of \mathbf{A} ; we may assume that \mathbf{v}_1 is normalized, since all scalar multiples of eigenvectors are also eigenvectors. Then we take \mathbf{V}_1 to be any orthogonal matrix with \mathbf{v}_1 as one of its columns:

$$oldsymbol{V}_1 = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{U}_1 \end{bmatrix}, \quad oldsymbol{U}_1 \in \mathbb{R}^{N imes N-1}, \quad oldsymbol{U}_1^{ ext{H}} oldsymbol{U}_1 = oldsymbol{I}, \quad oldsymbol{U}_1^{ ext{H}} oldsymbol{v}_1 = oldsymbol{0}.$$

This is equivalent to finding an orthobasis for \mathbb{R}^N where \boldsymbol{v}_1 is one of the basis vectors and the N-1 columns of \boldsymbol{U}_1 are the others. There are many such choices for \boldsymbol{U}_1 ; one can be found using the Gram-Schmidt algorithm.

Since v_1 is an eigenvector of A (call the corresponding eigenvalue λ_1),

$$AV_1 = \begin{bmatrix} \lambda_1 v_1 & AU_1 \end{bmatrix},$$

29

Georgia Tech ECE 6250 Notes by J. Romberg. Last updated 18:03, November 15, 2013

Thursday, March 16, 2017

9:40 AM

and

$$m{V}_1^{ ext{H}}m{A}m{V}_1 = egin{bmatrix} m{\lambda}_1 & & & \ 0 & & & \ dots & m{V}_1^{ ext{H}}m{A}m{U}_1 \ dots & & \ 0 & & \end{bmatrix}.$$

Now suppose we have an $N \times N$ matrix of the form

$$\boldsymbol{A}_{p} = \begin{bmatrix} \boldsymbol{\Delta}_{p} & \boldsymbol{W}_{p} \\ \boldsymbol{0} & \boldsymbol{M}_{p} \end{bmatrix}, \tag{1}$$

where Δ_p is a $p \times p$ upper-triangular matrix, \boldsymbol{W}_p is an arbitrary $p \times (N-p)$ matrix, and \boldsymbol{M}_p is an arbitrary $(N-p) \times (N-p)$ square matrix. Now let \boldsymbol{v}_{p+1} be an eigenvector of \boldsymbol{M}_p with corresponding eigenvalue λ_{p+1} , and let \boldsymbol{U}_{p+1} be an $(N-p) \times (N-p-1)$ matrix such that

$$oldsymbol{Z}_{p+1} = egin{bmatrix} oldsymbol{v}_{p+1} & oldsymbol{U}_{p+1} \end{bmatrix}$$

is a $(N-p) \times (N-p)$ orthonormal matrix. Set

$$oldsymbol{V}_{p+1} = egin{bmatrix} \mathbf{I}_p & \mathbf{0} \ \mathbf{0} & oldsymbol{Z}_{p+1} \end{bmatrix},$$

where \mathbf{I}_p is the $p \times p$ identity matrix. It should be clear that \boldsymbol{V}_{p+1} is an orthonormal matrix. Applying \boldsymbol{V}_{p+1} to the right of \boldsymbol{A}_p yields

$$oldsymbol{A}_p oldsymbol{V}_{p+1} = egin{bmatrix} oldsymbol{\Delta}_p & oldsymbol{W}_p oldsymbol{Z}_{p+1} \ oldsymbol{0} & [\lambda_{p+1} oldsymbol{v}_{p+1} & oldsymbol{M}_p oldsymbol{U}_{p+1}] \end{bmatrix},$$

and so

$$egin{aligned} oldsymbol{V}_{p+1}^{ ext{H}} oldsymbol{A}_p oldsymbol{V}_{p+1} & oldsymbol{W}_p oldsymbol{Z}_{p+1} \ oldsymbol{0} & egin{bmatrix} \lambda_{p+1} & & & & \ 0 & egin{bmatrix} \lambda_{p+1} & & & \ 0 & & \ dots & oldsymbol{Z}_{p+1}^{ ext{H}} oldsymbol{M}_p oldsymbol{U}_{p+1} \ dots & oldsymbol{M}_{p+1} \end{bmatrix} = egin{bmatrix} oldsymbol{\Delta}_{p+1} & oldsymbol{W}_{p+1} \ oldsymbol{0} & oldsymbol{M}_{p+1} \end{bmatrix}, \end{aligned}$$

30

Georgia Tech ECE 6250 Notes by J. Romberg. Last updated 18:03, November 15, 2013

Thursday, March 16, 2017

9:40 AM

where Δ_{p+1} is a $(p+1) \times (p+1)$ upper-triangular matrix, and \boldsymbol{W}_{p+1} and \boldsymbol{M}_{p+1} are arbitrary $(p+1) \times (N-p-1)$ and $(N-p-1) \times (N-p-1)$ matrices, respectively.

Given an arbitrary \boldsymbol{A} ,

$$oldsymbol{A}_p = oldsymbol{V}_{p-1}^{ ext{H}} \cdots oldsymbol{V}_2^{ ext{H}} oldsymbol{V}_1^{ ext{H}} oldsymbol{A} oldsymbol{V}_1 oldsymbol{V}_2 \cdots oldsymbol{V}_{p-1}$$

will have the form (1). Applying the construction over N iterations gives

$$\boldsymbol{\Delta} = \boldsymbol{V}_{N}^{\mathrm{H}} \cdots \boldsymbol{V}_{2}^{\mathrm{H}} \boldsymbol{V}_{1}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{V}_{1} \boldsymbol{V}_{2} \cdots \boldsymbol{V}_{N},$$

which will be upper-triangular. Since each of the V_p are orthonormal, $V := V_1 V_2 \cdots V_N$ will also be orthonormal. Thus

$$\Delta = V^{\mathrm{H}}AV \quad \Leftrightarrow \quad A = V\Delta V^{\mathrm{H}},$$

where Δ is upper-triangular and $V^{H}V = I$.

Eigenvalues of A

The diagonal entries of the matrix Δ will contain the λ_p used in the construction above (which we might recall are the eigenvalues of the submatrices M_p):

$$\Delta[p,p] = \lambda_p.$$

We can see now that the λ_p are also eigenvalues of \boldsymbol{A} . Since $\boldsymbol{\Delta}$ is triangular, its diagonal entries $\lambda_1, \ldots, \lambda_N$ are its eigenvalues. If \boldsymbol{x}_p is the eigenvector of $\boldsymbol{\Delta}$ corresponding to λ_p , then taking $\boldsymbol{y}_p = \boldsymbol{V} \boldsymbol{x}_p$ we have

$$oldsymbol{A}oldsymbol{y}_p = oldsymbol{V}oldsymbol{\Delta}oldsymbol{V}^{ ext{H}}oldsymbol{V}oldsymbol{x}_p = oldsymbol{V}oldsymbol{\Delta}oldsymbol{x}_p = \lambda_poldsymbol{V}oldsymbol{x}_p = \lambda_poldsymbol{V}oldsymbol{x}_p$$

and so the $\lambda_1, \ldots, \lambda_N$ are eigenvalues of \boldsymbol{A} as well.

31

Georgia Tech ECE 6250 Notes by J. Romberg. Last updated 18:03, November 15, 2013

Real-valued decompositions

If A is real-valued but non-symmetric, then both V and Δ can be complex-valued. However, there does real-valued U and Υ such that

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Upsilon} \boldsymbol{U}^{\mathrm{T}},$$

where U is orthonormal, $U^{T}U = I$, and Υ is almost upper-triangular:

$$\mathbf{\Upsilon} = \begin{bmatrix} \mathbf{\Lambda}_1 & * & \cdots & * \\ 0 & \mathbf{\Lambda}_2 & \cdots & * \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & \mathbf{\Lambda}_K \end{bmatrix}.$$

The Λ_p above are either 2×2 matrices or scalars; there is a 2×2 block for every pair of complex-conjugate eigenvalues of \boldsymbol{A} , and a scalar for every real eigenvalue. Although this decomposition is not strictly upper-triangular, it carries many of the same advantages. For example, with \boldsymbol{U} pre-computed and given a $\boldsymbol{b} \in \mathbb{R}^N$, we can still compute the solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ with $O(N^2)$ operations.

Symmetric PD Matrices cont. Monday, March 20, 2017 9:02 AM
In-class attendance quiz.
Find the eigenvalue's of (3 1)
Hint: (A - IX)v=0 So (this) is singular
$det(A-\lambda T) = (3-\lambda)(2-\lambda)-1=0 \qquad \lambda = \frac{5-\sqrt{25-20}}{2}$ $-5 + \lambda^2 - 1=0 \qquad \lambda = \frac{5-\sqrt{25-20}}{2}$
How to find eigenvectors?
$A u_1 = \lambda_1 u_1$
$\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} V_{11} \\ V_{12} \end{pmatrix} = \lambda_1 \begin{pmatrix} V_{11} \\ V_{12} \end{pmatrix} \leftarrow 50 \text{ be } 2 \text{ eg.}, \text{ 2 unknowns}$
or use eig(A) in mattab
An NxN symmetric/Hermitian matrix A has. Real eigenvalues, $\lambda_1,, \lambda_N$ (even for complexA) Northogonal eigenvectors, $V_1,, V_N$ If A is real-valued, then V_N can be chosen to be real-valued
We can decompose real-valued A as $A = V \wedge V = \sum_{n=1}^{V} \lambda_{n} v_{n} v_{n}^{T}$
eigenvectors as Ax = (inverse V + ransform) (pointwise multiply). (V + ransform) x

Symmetric PD matrices cont.

Monday, March 20, 2017

Definition: a symmetric matrix A is called positive definite if it has positive eigenvalues

$$\lambda_n > 0$$
 for $n = 1, ..., \Lambda'$

ve call it positive semi-définite if
$$\lambda_n > 0$$
 for $n=1,...,N$

we typically assume that

$$\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_N$$

$$A = \frac{1}{2} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \Rightarrow V_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$V_2 = \sqrt{2} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$v_2 = \sqrt{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$Ax = V - \Lambda V^{T} x$$

$$Ax = V_{-} \wedge V^{T} \times Suppose \times = \alpha, V_{i} + \alpha_{2} V_{2}$$

$$= \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} z & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} (\alpha_1 V_1 + \alpha_2 V_2)$$

$$= \begin{bmatrix} V, & V_2 \end{bmatrix} \begin{bmatrix} 2 & 6 \end{bmatrix} \begin{bmatrix} d, \\ d_z \end{bmatrix} = \begin{bmatrix} V, & V_2 \end{bmatrix} \begin{bmatrix} 2d, \\ d_z \end{bmatrix}$$

$$= 2 \propto V_1 + \alpha_2 V_2$$

