observation

$$
y=A x^{k}+e^{k n}
$$

Reconstruct/Estmate positive-definite

$$
\hat{x}=A^{-1} y=x+A^{-1} e
$$

Best/Worst case reconstruction error

$$
\frac{1}{\lambda_{1}^{2}}\|e\|_{2}^{2} \leq\|\tilde{x}-x\|_{2}^{2} \leq \frac{1}{\lambda_{N}^{2}}\|e\|_{2}^{2}
$$

equality is achieved for e pointing in the
Average reconstruction error direction of \underline{v}_{N}
assuming $e[n] \sim \operatorname{Normal}\left(0, \sigma^{2}\right), e[n]$ ied

$$
E\left[\|\tilde{x}-x\|_{2}^{2}\right]=\sigma^{2} \sum_{n=1}^{N} \frac{1}{\lambda_{n}^{2}}
$$

We generally are interested in non- sym + def matrices.

$$
y=A x, \quad y \in \mathbb{R}^{M}, \quad A \text { is } M \times N, x \in \mathbb{R}^{N}
$$

The singular value decomposition (SVD) of A is

$$
\begin{aligned}
A= & U \sum V^{\top} \\
u & =\left[u_{1}\left|u_{2}\right| \cdots \mid u_{R}\right] \quad \text { is an } M \times R \text { matrix }
\end{aligned}
$$

$u_{m} \in \mathbb{R}^{M}$ are orthogonal and normalized so that
$U^{\top} U=I$. Note $U U^{\top} \neq I$ when $R<M$ in general.
\{u ms form an orthobasis for the range space of A
$V=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{R}\right]$ is an $N \times R$ matrix
$v_{n} \in \mathbb{R}^{N}$ and are orthonormal
$V^{\top} V=I$ but, in general, $U V^{\top} \neq I$ when $R<N$
$\left\{v_{n}\right\}$ form an orthobasis for the range space of A^{\top} \rightarrow Range $\left(A^{\top}\right)$ consists of everything which is orthogonal to the null space of A.
Σ is an $R \times R$ diagonal matrix with positive entries

$$
\Sigma=\left[\begin{array}{lll}
\sigma_{1} & & \bigcirc \\
& \sigma_{2} & \bigcirc \\
O^{\ddots} & \ddots & \\
& & \sigma_{R}
\end{array}\right] \quad \begin{aligned}
& \sigma_{r} \text { are the singular values } \\
& \text { of } A \\
& \sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{R}
\end{aligned}
$$

$$
A=U \Sigma V^{\top}
$$

$$
\underbrace{A^{\top} A}_{\tilde{j}}=V \Sigma \underbrace{u^{\top}}_{I} \dot{u} \Sigma V^{\top}=V \sum_{\sigma_{r}}^{\Sigma^{2}} v^{\top} \text {. }
$$

symmetric.
positive semi-detinite
(some eigen values could be zero)
σ_{r} 's are the square roots of the eigenvalues of $A^{+} A$ (actually of the non-zero eigenvalue) of $A^{\top} A$)
$A A^{\top}=U \Sigma^{2} U^{\top} \quad$ The non-zero eigenvalues of $A^{\top} A$ and $A A^{T}$ are the same so the σ_{r} are also the square roots of the eigenvalues of $A A^{\top}$
$A \in \mathbb{R}^{M \times N}$ if $M \geqslant N$, then R is the number of linearly independent columns
if $M \leqslant N$, then R is the number of linearly independent rows
A is full rank if $R=\min (M, N)$

$$
\begin{aligned}
& {[A]=\left[\begin{array}{l}
{\left[\begin{array}{l}
{\left[\begin{array}{l}
v^{\top} \\
3 \times 3
\end{array}\right]\left[\begin{array}{l}
v^{\top}
\end{array}\right]} \\
6 \times 3
\end{array} \quad m>N\right.} \\
x \text { is } 4 \times 1 \\
y \text { is } 6 \times 1
\end{array}\right.} \\
& {\left[A=[u]\left[\begin{array}{ll}
v^{\top}
\end{array}\right] \begin{array}{l}
m<N . \\
y=A x \text { is under- }
\end{array}\right.} \\
& \text { determined } \\
& {[A]=[u][T][T=M=R \backslash \text { full-rank }} \\
& A \text { is square }
\end{aligned}
$$

SVD and Least Squares
Wednesday, March 22,2017 9:44 AM
Since $\left.\begin{array}{rl}A & =u \sum V^{\top}=\left[u_{1}\left|u_{2}\right| \ldots\right.\end{array} u_{R}\right]\left[\begin{array}{ccc}\sigma_{1} & & \sigma \\ 0_{2} & \ddots \\ A & \ddots \sigma_{r}\end{array}\right]\left[\begin{array}{c}\frac{v_{1}{ }^{R}}{\frac{v_{2}{ }^{\top}}{\vdots}} \\ \frac{\sigma_{r}{ }^{\top}}{v_{R}}\end{array}\right]$

$$
A=\sum_{r=1}^{R} \sigma_{r} u_{r} V_{r}^{\top}
$$

"Solving" $y=A x$ using SUD

$$
\begin{aligned}
& y \in \mathbb{R}^{M} \quad A \in \mathbb{R}^{M_{x} N} \\
& x \in \mathbb{R}^{N}
\end{aligned}
$$

Given y, we want to find x in such a way that

1. when the unique solution exists, use that
2. when no solution exists, return something reasonable
3. when there are an infinite number of solutions, choose the "best" one.

$$
\begin{aligned}
\text { Define a residual } \quad \text { Least-squares framework } \\
r=y-A_{x} \Rightarrow \text { optimize } \min _{x \in \mathbb{R}^{N}}\left\|y-A_{x}\right\|_{2}^{2}
\end{aligned}
$$

Solution

$$
\text { let } x=V \underline{\alpha}+V_{0} \underline{\alpha}_{0}=\left[V \mid V_{0}\right]\left[\begin{array}{l}
\underline{\alpha} \\
\alpha_{0}
\end{array}\right]
$$

V is $N \times R$ and from the SUD $\quad(A=U \Sigma(V)$)
V_{0} is $N \times(N-R)$ and the colums of V_{0} are orthonormal and orthogonal to the columns of V

$$
\begin{aligned}
& V^{\top} V=I, \quad V_{0}^{\top} V_{0}=I \quad V^{\top} V_{0}=0 \\
& {\left[V \mid V_{0}\right]^{\top}\left[V \mid V_{0}\right]=I_{N \times N}} \\
& \alpha=V^{\top} x, \alpha_{0}=V_{0}^{\top} x
\end{aligned}
$$

SVD and Least Squares cont.
Wednesday, March 22,2017 9:58 AM

$$
\alpha=V^{\top} x, \quad \alpha_{0}=V_{0}^{\top} x
$$

Note, $x=V_{\alpha}+V_{0} \alpha_{0}=V V^{\top} x+V_{0} V_{0}^{+} x$

$$
=\left[v v^{\top}+v_{0} v_{0}^{\top}\right] x=x
$$

$$
y=u \beta+u_{0} \beta_{0}
$$

$$
u^{\top} u=I, \quad u_{0}^{\top} u_{0}=1, \quad u^{\top} u_{0}=0
$$

$$
\left[u \mid u_{0}\right]^{+}\left[u \mid u_{0}\right]=I_{m \times m}
$$

$$
\begin{aligned}
& \beta=u^{\top} y, \quad \beta_{0}=u_{0}^{\top} y \\
r= & y-A_{x} \\
r= & u \beta+u_{0} \beta_{0}-u \Sigma v^{\top}\left(v_{\alpha}+v_{0} \alpha_{0}\right) \\
= & u \beta+u_{0} \beta_{0}-u \Sigma \alpha \\
= & u_{0} \underbrace{\beta_{0}+u(\beta-\Sigma \alpha})
\end{aligned}
$$

We want to choose $\underline{\alpha}$ that minimizes $\|r\|_{2}^{2}$

$$
\begin{aligned}
\|r\|_{2}^{2}=\langle\cdot, \cdot\rangle= & \left.\left\langle u_{0} \beta_{0}, u_{0} \beta_{0}\right\rangle-2\left\langle u_{0} \beta_{0}, u\left(\beta-\sum \alpha\right)\right\rangle\right\rangle \\
& +\left\langle u\left(\beta-\sum_{\alpha}\right), u\left(\beta-\sum \alpha\right)\right\rangle \quad \text { has a } u_{0}^{\top} u \text { furor } \\
=\left\|u_{0} \beta_{0}\right\|_{2}^{2}+ & \left\|u\left(\beta-\sum \alpha\right)\right\|_{2}^{2}
\end{aligned}
$$ minimized when $\hat{\alpha}=\Sigma^{-1} \beta$

The x which minimizes $\|r\|_{2}^{2}$ is

$$
\begin{aligned}
& \hat{x}=V \hat{\alpha}=V \Sigma^{-1} \beta=V \Sigma^{-1} u^{\top} y \\
& \quad A=u \Sigma v^{\top} \quad A \cdot v \Sigma^{-1} u^{\top}=u \Sigma V_{\substack{\top} I_{R-2} \sum^{-1} u^{\top}}^{I_{R-2}} \\
& \hat{x}=u u^{\top} y
\end{aligned}
$$

Psuedo Inverse
Wednesday, March 22,2017 10:12 AM
If $A=\underbrace{U \sum V^{\top}}_{\text {SVD of } A \text { Then the psuedo-inverse of } A}$

$$
A^{\dagger}=V \Sigma^{-1} U^{\top}
$$

$$
\begin{aligned}
& \text { for on } \quad y=A x \\
& \text { ex amp void } \\
& \text { were }
\end{aligned}
$$

<only applies to full. rank A, and A has $M>N$
and another form...

$$
A^{\top}\left(A A^{\top}\right)^{-1} \quad=(1 \text { Think })
$$

1. why $y \in \operatorname{span}\left(\left\{u_{1}, \ldots, u_{m}\right\}\right)$ then $\beta_{0}=u_{0}^{+} y=0$ and then $r=0$.
2. If $R<N$ the solution is not unique. In this case V_{0} has at least one column, and any part of a vector x in the range of V_{0} is "not seen by A " since

$$
\begin{aligned}
& A V_{0} \alpha_{0}=u \sum V_{V^{\top} V_{0}}=0 \\
& x^{\prime}=\hat{x}+V_{0} \alpha_{0} \\
& \quad\left(V_{0} V_{0}=\left[\begin{array}{llll}
0 & 0 & 1
\end{array}\right]^{+}\right)
\end{aligned}
$$

for any $\alpha_{0} \in \mathbb{R}^{N-R}$ we have the same ex: $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0\end{array}\right]$
define $x^{\prime}=\hat{x}+V_{0} \alpha_{0}$ it win't matter

$$
x=\left[\begin{array}{l}
a \\
b \\
d \\
d
\end{array}\right]
$$

r since $A x^{\prime}=A \hat{x}$ what d is, A cannot see it.

SVD Least-Squares Solution

Using the SVD to find the solution as described on the previous pages minimizes both the residual and the norm of the solution!
in Matlab

$$
x=A \backslash y ;
$$

