Efficiently Computing LS
Monday, April 10, 2017 9:03 AM
Summary of Least squares problems
psendo-inverse when A is full column rank pseudo-inverse when A is full row rank

Tikhonov regularization
generalized Tikhonov reg. weighted least squares
blUE

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} y
$$

$$
\hat{x}=A^{\top}\left(A A^{\top}\right)^{-1} y
$$

$$
\begin{aligned}
& \hat{x}=\left(A^{\top} A+\delta I\right)^{-1} A^{\top} y \\
& \hat{x}=\left(A^{\top} A+\delta D^{\top} D\right)^{-1} A^{\top} y \\
& \hat{x}=\left(A^{\top} W^{\top} W A\right)^{-1} A^{\top} W^{\top} W y \\
& \hat{x}=\left(A^{\top} R^{-1} A\right)^{-1} A^{\top} R^{-1} y
\end{aligned}
$$

each solves a symmetric, positive definite set of equations
There are better ways to solve these than with direct computation
if we have a triangular system

$$
\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
a_{11} & 0 & \\
a_{21} & a_{22} & \bigcirc \\
\vdots & & \ddots \\
a_{w 1} & & a_{w 1 w}
\end{array}\right] \begin{array}{l}
x=y \\
\text { (solve for } x
\end{array}} \\
x_{1}=y_{1} / a_{11} \\
x_{2} & =\frac{1}{a_{22}}\left(y_{2}-a_{21} \cdot x_{1}\right) \text { we of these each te }
\end{array}\right.
$$

we can solve this with $O\left(N^{2}\right)$ operations instead of

$$
x=A^{-1} y \Leftarrow O\left(N^{3}\right)
$$

Exploiting Structure
Monday, April 10, 2017 9:20 AM
if $\quad A \hat{x}=y$
\angle solving for x
if A is diagonal $O(N)$
if A is triangular $O\left(N^{2}\right)^{*}$
if A is orthogonal $O\left(N^{2}\right)^{*} \quad \hat{x}=A^{\top} y$
some diver algorithms
if A is Toeplitz $z^{-c_{n} m} O\left(N^{2}\right)$

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 \\
7 & 10 & 1 & 2 \\
3 & 7 & 10 & 1
\end{array}\right)
$$

if A is Circulant $O(N \log N)$
if A is general $O\left(N^{3}\right)$
Performing a Cholesky decomposition on sym+ def A
$A=L L^{\top} \leftarrow$ we can use the triangular method +wire to find a solution

$$
\text { to } \quad A x=y \quad O\left(N^{2}\right)
$$

same for OR decomposition (can be found wing Gram-Schmidr)

$$
A=Q R
$$

often used if the $A x=y$ equation needs to be solved for multiple y 's. But, they are often used even for a single y because they are more numerically stable than solutions involving A^{-1}.

Iterative methods for Least Squares
Monday, April 10, 2017 9:39 AM

$$
\begin{aligned}
& \hat{x}=\underbrace{(\underbrace{A^{\top} A})^{-1} A^{\top} y}_{\text {costs }} \quad A \in \mathbb{R}^{m \times N} \\
& A^{\top} A \hat{x}=A^{\top} y
\end{aligned}
$$

solving this system directly is $O\left(N^{3}\right)$
example: MRI $M=5 \cdot 10^{6}$ by $N=2 \cdot 10^{6}$

$$
M N^{2} \sim 10^{19}
$$

for such a system, we need another solution
Recasting as an optimization

$$
\begin{gathered}
A^{\top} A x=A^{\top} y \\
H x=b \\
l_{\text {sym }}=\operatorname{det}
\end{gathered}
$$

The following is a quadratic program and is convex

$$
\min _{x \in \mathbb{R}^{x}} \frac{1}{2} x^{\top} H x-x^{\top} b
$$

proceed by setting the derivative to zero

$$
\begin{gathered}
\left.\nabla_{x}\left(\frac{1}{2} x^{\top} H x-x^{\top} b\right)\right|_{x=\hat{x}}=0 \\
\Perp \\
H x-b=0 \\
\Downarrow \\
H x=b
\end{gathered}
$$

Gradient Descent
Monday, April 10, 2017 9:48 AM
$f(x)=x H x-x b \quad \leftarrow$ one dimensional example

we can define $b-H x_{k}=r_{k}$

$$
-\nabla f(x) \overline{\left.\right|_{x=k_{k}}}
$$ residual

$x_{k+1}=x_{k}+\alpha_{k} r_{k} \quad \leftarrow$ update equation
to make $f\left(x_{k+1}\right)$ as small as possible
$f\left(x_{k}+\alpha_{k} r_{k}\right) \leftarrow$ e can solve for α that minimizes this

$$
\begin{aligned}
\frac{\partial}{\partial \alpha} f\left(x_{k}+\alpha r_{k}\right) & =0 \\
& =\nabla f\left(x_{k+1}\right)^{\top} \frac{\partial}{\partial \alpha} x_{k+1} \leftarrow \text { using chain owe } \\
& =\nabla f\left(x_{k+1}\right)^{\top} r_{k}
\end{aligned}
$$

we need $r_{k} \perp \forall f\left(x_{k+1}\right)$ Thus $r_{k+1} \perp r_{k}$

Gradient Continued
Monday, April 10,2017 10:00 AM

$$
\begin{gathered}
r_{k+1}^{\top} r_{k}=0 \\
\left(b-H x_{k+1}\right)^{\top} r_{k}=0 \\
\left(b-H\left(x_{k}+\alpha_{k} r_{k}\right)\right)^{\top} r_{x}=0 \\
\vdots \\
\alpha_{k}=\frac{r_{k}^{\top} r_{k}}{r_{k}^{\top} H r_{k}}
\end{gathered}
$$

In general, moving in the proper direction with a non-zero, but sufficiently small step size will yield conver gence.

LMS algorithm
we are trying to minimize $E\left\{e^{2}[n]\right\}$ where

$$
e[n]=d[n]-\underline{w}^{\top} \underline{x}[n]
$$

$$
\underline{x}[n]=\left(\begin{array}{c}
x(n) \\
x(n-1) \\
\vdots \\
x(n-p)
\end{array}\right)
$$

$$
\begin{aligned}
\nabla_{\omega} E\left\{e^{2}[n]\right\} & =E\left\{\nabla_{\omega} e^{2}[n]\right\}=E\left\{2 e[n] \nabla_{\omega} e[n]\right\} \\
& =-E\{2 e[n] \underline{x}[n]\}=\begin{array}{c}
0 \text { (ives the solution } \\
\text { exactly }
\end{array}
\end{aligned}
$$

LMS Algorithm
Monday, April 10,2017 10:12 AM

$$
\begin{aligned}
& E\{e[n] \underline{x}[n]\}=E\{(d[n]-\underbrace{w^{\top}}_{\text {scalar }} \underline{x}[n]) \underline{x}[n]\} \\
& =E\{d[n] \underline{x}[n]\}-E\left\{\underline{X}[n] \underline{X}^{\top}[n]\right\} \underline{w} \\
& \text { cross correlation of } \\
& x[n] \text { with } d[n] \\
& =\Gamma_{d_{x}}-R_{x} \underline{w}=0 \Rightarrow R_{x} \underline{w}=r_{d x}
\end{aligned}
$$

we have seen, problems like this before!
instead of solving the normal equation directly, we will use gradient descent

$$
\begin{align*}
& \underline{w}_{n+1}=\underline{w}_{n}-\frac{1}{2} \mu \nabla_{w} E\left\{e^{2}[n]\right\} \\
& \underline{w}_{n+1}=\underline{w}_{n}+\mu E\{e[n] \underline{x}[n]\} \tag{1}
\end{align*}
$$

how to find?

$$
\hat{E}\{e[n] \underline{x}[n]\}=\frac{1}{N} \sum_{k=n-N+1}^{n} e(k) \underline{x}(k)
$$

(sample mean)
The LMS algorithm uses

$$
\frac{E\{e[n] \underline{x}[n]\}}{\underline{w}_{n+1}=\underline{w}_{n}+\mu e[n] \underline{x}[n]} \approx e[n] \underline{x}[n]
$$

LMS Algorithm Practical Issues
Wednesday, April 19, 2017 9:06 AM

$$
\begin{array}{rlr}
\underline{y}[n]=\underline{w}^{\top}[n] \underline{x}(n) & \underline{x}(n)=\left(\begin{array}{c}
x(n) \\
x(n-1) \\
\vdots \\
x(n-p)
\end{array}\right) & w[n]=\left(\begin{array}{c}
w_{0}(n) \\
w_{1}(n) \\
\vdots \\
w_{p}(n)
\end{array}\right) \\
e(n)=d(n)-y(n) &
\end{array}
$$

"d" for desired or target signal

$$
\begin{aligned}
& \underline{w}[n+1]=\underline{w}[n]+\mu e(n) \underline{x}[n] \quad \text { minimizes the expected } \\
& R_{x}=E\left\{\underline{x}[n] \underline{x}^{\top}[n]\right\} \quad \leftarrow \text { error } \quad E\left\{e^{2}(n)\right\} \\
&\left.R^{\prime}\right\} \text { coition matrix }
\end{aligned}
$$

if $\left\{\lambda_{i}\right\}$ are the eigenvalues of R_{x} then

$$
\begin{gathered}
0<\mu<2 \lambda_{1} \\
\lambda_{\text {max }} \leq \sum_{k=0}^{p} \lambda_{k}=\lambda_{\text {max }}\left(R_{x}\right)=\sum_{k=0}^{p} E\left\{x^{2}(n-k)\right\}=\ldots
\end{gathered}
$$

if $X(n)$ is stationary (or WSS)

$$
=(p+1) \cdot\left(E\left\{x^{2}(n)\right\}\right) \approx \sum_{k=0}^{p} x^{2}(n-k)=\underline{x}^{\top}(n) \underline{x}(n)
$$

we define $M(n)=\frac{\beta}{\underline{x}^{\top}(n) \underline{x}(n)}$ where $0<\beta<2$
in practice, we choose $\beta=0.5$
(or in the range 0.1 to 1)
nLMS Adaptive Filters
Tuesday, April 18, 2017 4:34 PM

$$
\underline{w}[n+1]=\underline{w}[n]+\frac{\beta}{\|\underline{x}(n)\|^{2}} \underline{x}(n) e(n)
$$

function [y,e,w]=mylms (x,d,w ,beta)
$\%$ length $\mathrm{x}=$ length d
$x=x(:) ; d=d(:) ; w=w(:)$;
$y=\operatorname{zeros}(\operatorname{size}(x))$;
e $=\operatorname{zeros}(\operatorname{size}(x))$;
for $i=l$ length $(w):$ length (x),
xx $\quad=x(i:-1: i-l e n g t h(w)+1)$;
$y(i) \quad=w^{\prime} * x x$;
$e(i)=d(i)-y(i)$;
w $\quad=w+b e t a /\left(x x^{\prime *} x x+1 e-8\right)$ * eli) * xx;
end

w learns the unknown system
w will "track" or follow the unknown system as it changes so that we always have an estimate of the system.

Echo Cancellation
Wednesday, April 19, 2017 9:42 AM

Adaptive LMS filters adapt most quickly when $x[n]$ is white noise.
\angle adaptation rate is a function of
$\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}} \rightarrow$ larger spread $=$ slower adaptation

