
GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 6254 Spring 2018
Problem Set #3

Assigned: 14 Feb 18
Due Date: 26 Feb 18

Suggested reading:

• Elements of Statistical Learning (by Hastie, Tibshirani, and Friedman): Section 4.5 (pages
129–135) discusses optimal separating hyperplanes; Sections 12.1–12.3 (pages 417–438) dis-
cuss support vector machines and kernels in more detail.

Homework is due in class at the beginning of the class period on the due date.

For distance learning students, the homework should be scanned and uploaded to the t-square
dropbox one week after the regular due date.

PROBLEM 3.1:
Apply the perceptron algorithm to the following pattern classes:

ω1 : {(0, 0, 0)T , (1, 0, 0)T , (1, 0, 1)T , (1, 1, 0)T }
ω2 : {(0, 0, 1)T , (0, 1, 1)T , (0, 1, 0)T , (1, 1, 1)T }.

Let θ(1) = (−1,−2,−2, 0)T where θ = (w1, w2, w3, b)
T .

PROBLEM 3.2:
Consider a support vector machine and the following training data from two categories:

ω1 : [1, 1]T , [2, 2]T , [2, 0]T

ω2 : [0, 0]T , [1, 0]T , [0, 1]T

(a) Plot these six training points, and construct by inspection the weight vector for the optimal
hyperplane and the optimal margin.

(b) How many support vectors are there? Identify them.

(c) Construct the solution in dual space by finding the Lagrange undetermined multipliers, αi.
Compare your result to part (a).

PROBLEM 3.3:

In the notes I provided on kernels, we proved that if the function k(u,v) is a symmetric and
positive semi-definite kernel, then it is an “inner product kernel” (i.e., there is a Hilbert space H
with inner product 〈·, ·〉 and a map Φ : Rd → H such that k(u,v) = 〈Φ(u),Φ(v)〉). Show that
the converse is also true: an inner product kernel must be positive semi-definite. (This direction is
much easier.)



PROBLEM 3.4:

1. Show that if k1(u,v) and k2(u,v) are PSD kernels, then

k′(u,v) = γ1k1(u,v) + γ2k2(u,v)

is a PSD kernel for γ1, γ2 ≥ 0.

2. Let f(x) : Rd → R be an arbitrary function on Rd. Show that if k(u,v) is a PSD kernel, then

k′(u,v) = f(u)k(u,v)f(v)

is also a PSD kernel.

3. Show that if k1(u,v) and k2(u,v) are PSD kernels, then

k′(u,v) = k1(u,v) · k2(u,v)

is a PSD kernel. (Hint: any N × N symmetric positive semi-definite matrix can be written
as V ΛV T =

∑N
n=1 λnvnv

T
n , and if you did part (b) correctly, you have already shown that if

K is a symmetric PSD matrix, then K ′(i, j) = v(i)K(i, j)v(j) is also symmetric PSD ...)

4. Suppose that k1(u,v), k2(u,v), . . . is an infinite sequence of PSD kernels that converge point-
wise:

lim
i→∞

ki(u,v) = k(u,v), for all u,v ∈ Rd.

Argue that k(u,v) is a PSD kernel.

5. Argue that if k(u,v) is a PSD kernel, then

k′(u,v) = exp(k(u,v))

is a PSD kernel. (Hint: Taylor, plus all the properties you proved above.)

6. Show that

k(u,v) = exp

(
−‖u− v‖

2
2

2σ2

)
is a PSD kernel for all σ2 > 0. (Hint: write the k above as k(u,v) = f(u)k′(u,v)f(v).)



PROBLEM 3.5:
In this problem you will use SVMs to build a simple text classification system. To begin, you need
to get the MNIST dataset. You can do this in Python using the commands

from sklearn.datasets import fetch_mldata

mnist = fetch_mldata(’MNIST original’)

This downloads the dataset and stores it in a default location (∼/scikit learn data/). You
can also use the optional parameter data home=path in fetch mldata to direct the dataset to a
custom path if you wish. The first time you run this command, the data will be downloaded from
mldata.org, but once it has been downloaded this will simply load the dataset into the variable
mnist.

This data set contains 70 000 handwritten digits, each of size 28× 28 pixels.1 You should begin
by putting this data into a more convenient form by setting

X = mnist.data

y = mnist.target

Each row of X corresponds to one image. You can use the following to plot the jth image:

import matplotlib.pyplot as plt

plt.title(’The jth image is a {label}’.format(label=int(y[j])))

plt.imshow(X[j].reshape((28,28)), cmap=’gray’)

plt.show()

In this problem you will build a classifier to classify between the (sometimes very similar) images
of the digits “4” and “9”. To get just this data, you can use

X4 = X[y==4,:]

X9 = X[y==9,:]

There are a little under 7 000 examples from each class. You should begin by using this data to
form three distinct datasets: the first 4 000 points from each class will be used for designing the
classifier (this is the training set), and the remainder will be used to evaluate the performance of
our classifier (this is the testing set).

Since SVMs involve tuning a parameter C, you will also need to set this parameter. We will
do this in a principled way using the so-called “holdout method”. This means that you take the
training set and divide it into two parts: you use the first to fit the classifier, and the second –
which we call the holdout set – to gauge performance for a given value of C. You will want to decide
on a finite set of “grid points” on which to test C (I would suggest a logarithmic grid of values to
test both C � 1 and C � 1). For each value of C, you will train an SVM on the first part of the
set, and then compute the error rate on the holdout set. In the end, you can then choose the value
of C that results in a classifier that gives the smallest error on the holdout set

Note: Once you have selected C, you may then retrain on all the entire training set (including
the holdout set), but you should never use the testing set until every parameter in your algorithm
is set. These are used exclusively for computing the final test error.

To train the SVM , you can use the built in solver from scikit-learn. As an example, to train a
linear SVM on the full dataset with a value of C = 1, we would use

from sklearn import svm

clf = svm.SVC(C=1.0,kernel=’linear’)

clf.fit(X,y)

1You can learn more about this dataset at http://yann.lecun.com/exdb/mnist/.



Once you have trained the classifier, you can calculate the probability of error for the resulting
classifier on the full dataset via

Pe = 1 - clf.score(X,y)

1. Train an SVM using the kernels k(u,v) = (uTv + 1)p, p = 1, 2, that is, the inhomogeneous
linear and quadratic kernel. To do this, you will want to set the parameters kernel=’poly’

and degree=1 or degree=2.

For each kernel, report the best value of C, the test error, and the number of data points that
are support vectors (returned via clf.support vectors . Turn in your code.

2. Repeat the above using the radial basis function kernel k(u,v) = e−γ‖u−v‖
2

(by setting the
parameters kernel=’rbf’, gamma=gamma. You will now need to determine the best value for
both C and γ. Report the best value of C and γ, the test error, and the number of support
vectors.

3. For each kernel, turn in a 4× 4 subplot showing images of the 16 support vectors that violate
the margin by the greatest amount (these are, in a sense, the “hardest” examples to classify),
and explain how these are determined. Above each subplot, indicate the true label (4 or 9).

To help get started with this, you can use the following code:

f, axarr = plt.subplots(4, 4)

axarr[0, 0].imshow(X[j].reshape((28,28)), cmap=’gray’)

axarr[0, 0].axis(’off’)

axarr[0, 0].set_title(’{label}’.format(label=int(y[j])))

...

plt.show()

You should consider using the clf.decision function output of the classifier here.


