GEORGIA INSTITUTE OF TECHNOLOGY

School of Electrical and Computer Engineering

Pre-test

Due: January 17, 2018
Course: ECE 6254

Name:
Last, First

- Open book/internet.
- No time limit.
- The test is worth 100 points. There are ten questions, and each one is worth 10 points. In multi-part questions, each part will be weighted equally.
- All work should be performed on the test itself. If more space is needed, use the backs of the pages.
- This test will be conducted under the rules and guidelines of the Georgia Tech Honor Code and no cheating will be tolerated (i.e., no discussing the test with other students).
- Make sure to look at the question titles, they will sometimes provide valuable hints.
- Please contact Prof. Anderson (in person or via email) directly with any questions if you are unclear what a question is asking.

Problem 1: Random variables. Suppose that two independent random variables X and Y are distributed according to

$$
X \sim \operatorname{Uniform}(0,3) \quad Y \sim \operatorname{Uniform}(1,4)
$$

What is the probability that $X<Y$.

Problem 2: Independence: Suppose that the probability that A occurs is 0.4 and the probability that both A and B occur is 0.25 . If A and B are independent events, what is the probability that neither A nor B occur?

Problem 3: Conditional probability density functions and derived distributions: Suppose that X and Y have joint pdf given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{ll}
2 e^{-2 x-y} & x, y \geq 0 \\
0 & \text { otherwise }
\end{array} .\right.
$$

(a) What are the marginal probability density functions for X and Y ?
(b) What is the conditional probability density function $f_{X \mid Y}(x \mid y)$?

Problem 4: The median and the cumulative distribution function: Let M be the number of miles your electric car can drive without running out of electricity, and suppose that M has probability density function given by

$$
f_{M}(m)= \begin{cases}\frac{e^{-m / 301}}{301} & m \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

What is the median range for your car? That is, how far can you drive before there is a 50% chance that your battery runs out?

Problem 5: Bayes rule and normal random variables: Let X be the score of a randomly selected student in this class on an exam. Let Y denote the mean score of the class. If we knew Y, suppose that a reasonable model for X would be that X is normal with mean Y and variance 20 , that is, ${ }^{1}$

$$
f_{X \mid Y}(x \mid y)=\frac{1}{\sqrt{2 \pi 20}} e^{-(x-y)^{2} / 40}
$$

Suppose that I think that the mean for the exam is probably between 70 and 85, i.e.,

$$
f_{Y}(y)= \begin{cases}\frac{1}{15} & 70 \leq y \leq 85 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that I randomly select a quiz, grade it, and it turns out to receive a 100 . Using Bayes rule, how should I update my distribution for Y ? That is, what is $f_{Y \mid X}(y \mid X=100)$? (Simplify as much as possible, but you may leave your answer in terms of the standard normal cumulative distribution function Φ if you wish.)

[^0]Problem 6: Joint probability density functions: The correlation coefficient $\rho(X, Y)$ between a pair of random variables X and Y is given by

$$
\rho(X, Y)=\frac{E[(X-E[X]) \cdot(Y-E[Y])]}{\sigma_{X} \sigma_{Y}} .
$$

Suppose that X and Y have joint pdf given by

$$
f_{X, Y}(x, y)= \begin{cases}\frac{3}{4} x^{2}(1-y) & 0 \leq x \leq 2,0 \leq y \leq 1 \\ 0 & \text { else. }\end{cases}
$$

for any x, y. What is ρ in this case?

Problem 7: Linear Algebra: Pythagoras?
(a) Under what conditions on \boldsymbol{x} and \boldsymbol{y} is it true that

$$
\|\boldsymbol{x}+\boldsymbol{y}\|_{2}^{2}=\|\boldsymbol{x}\|_{2}^{2}+\|\boldsymbol{y}\|_{2}^{2} ?
$$

(b) Under what conditions on \boldsymbol{x} and \boldsymbol{y} is it true that

$$
\|\boldsymbol{x}+\boldsymbol{y}\|_{2}=\|\boldsymbol{x}\|_{2}+\|\boldsymbol{y}\|_{2} ?
$$

Problem 8: Singular value decomposition.: Let

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
-2 & 2 & 2 & -2 & 0 \\
2 & -2 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

(a) What is $\operatorname{rank}(\boldsymbol{A})$?
(b) Using Python or MATLAB (or whatever) find the singular value decomposition of \boldsymbol{A}. That is, find matrices $\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V}$ such that

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}
$$

and $\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=\mathbf{I}, \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=\mathbf{I}$, and Σ has non-negative entries along its diagonal and is zero elsewhere.
(c) Describe, in words, the column space (or range) of \boldsymbol{A} :

$$
\operatorname{Range}(\boldsymbol{A})=\left\{\boldsymbol{v} \in \mathbb{R}^{5}: \boldsymbol{v}=\boldsymbol{A} \boldsymbol{x} \text { for some } \boldsymbol{x}\right\} .
$$

(d) Describe, in words, the row space of \boldsymbol{A} (this is the column space of $\boldsymbol{A}^{\mathrm{T}}$):

$$
\operatorname{Range}\left(\boldsymbol{A}^{\mathrm{T}}\right)=\left\{\boldsymbol{v} \in \mathbb{R}^{5}: \boldsymbol{v}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{x} \text { for some } \boldsymbol{x}\right\} .
$$

Problem 9: Eigenvalues and eigenvectors. Suppose that two $n \times n$ matrices \mathbf{A} and \mathbf{B} have the same eigenvectors, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, but different sets of eigenvalues. Matrix \mathbf{A} has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ with respective eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Matrix \mathbf{B} has eigenvalues $\gamma_{1}, \ldots, \gamma_{n}$ with respective eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
(a) What are the eigenvalues and eigenvectors of $\mathbf{A}+\mathbf{B}$? support your answer
(b) What are the eigenvalues and eigenvectors of AB? support your answer
(c) What are the eigenvalues and eigenvectors of $\mathbf{A}^{-1} \mathbf{B}$? support your answer

Problem 10: Orthogonal projections: Let

$$
\mathbf{p}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \quad \mathbf{p}_{2}=\left[\begin{array}{c}
4 \\
-2 \\
-6 \\
-7
\end{array}\right] \quad \mathbf{p}_{3}=\left[\begin{array}{c}
3 \\
4 \\
-2 \\
1
\end{array}\right]
$$

and

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
7
\end{array}\right]
$$

Find a decomposition of \mathbf{x} into $\mathbf{x}=\mathbf{x}^{*}+\mathbf{x}_{e}$ where \mathbf{x}^{*} is in the span of $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$, i.e., where $\mathbf{x}^{*}=\alpha_{1} \mathbf{p}_{1}+\alpha_{2} \mathbf{p}_{2}+\alpha_{3} \mathbf{p}_{3}$ for some suitable choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Make sure to give both \mathbf{x}^{*} and \mathbf{x}_{e}, and show your work/describe your method, even if you use a computer to help with the calculations.

Additional workspace:

Additional workspace:

[^0]: ${ }^{1}$ Note that this pdf technically allows some probability of scores above 100 and below 0 . You should just ignore this for now.

