
The learning challenge

Goal

There is some underlying function                     that captures 

an input-output relationship which we would like to estimate 

Assumption

We do not know   , but we get to observe example input-

output pairs which are generated independently at random

– we draw      according to some unknown distribution and get 

to observe the pair  

– we draw      according to some unknown distribution and get 

to observe the pair                            , where     represents 

“noise” with an unknown distribution

– we draw pairs              according to some unknown joint 

distribution



A first model of learning

Let’s restrict our attention to binary classification

– our labels belong to                      (or                           )

We observe the data 

where each 

Suppose we are given a list of possible hypotheses

From the training data  , we would like to select the best 

possible hypothesis from   



Example



Empirical risk

Recall from last time our definition of risk and its empirical 

counterpart

Risk: 

Empirical risk:

In our definition of              we make use of the indicator 

function

The empirical risk              gives us an estimate of the true 

risk           , and from the law of large numbers we know that  

as



Empirical risk minimization (ERM)

We want to choose a hypothesis from       that achieves a 

small risk

Since              is supposed to be a good estimate of          , 

an incredibly natural (and common) strategy is to pick

Aside: 



The risk in ERM

As we discussed last time, as long as we have enough data, 

for any particular hypothesis      , we expect 

However, if      is very large, then we can also expect that 

there are some       for which

Thus, what can we say about            ?

• We know that               is as small as it can be

– this could be because            is small

– or, it could be because                               for some 

• Which explanation is more likely?

– it depends… just how large is     ?



Confidence bounds

We would like to be able to give quantitative answers to 

questions along the lines of:

If we are deciding between      hypotheses, how much data do 

we need (how large does     need to be) to ensure that

for some                  that we define in advance 

Asymptotic results like the law of large numbers and the 

central limit theorem do not give us answers to these 

questions

Instead, we need nonasymptotic results about 



Our goal is ultimately to show how to make

by setting     appropriately

What is random here?

– the training data  

– , because each depends on

– , because it depends on

In order to tease all of this apart, let’s begin by going back to 

just a single hypothesis      and studying

Too much randomness?



Bounding the error

We want to calculate

Note that              is a random variable

– we have

where the      are Bernoulli random variables

– thus,                 is a Binomial random variable

– since                                                               , we have that



Deviation from the mean

Thus, an equivalent way to think about our problem is that 

we would like to calculate

and this is just asking about the probability that a Binomial 

random variable will deviate from it’s mean by more than

If          represents the cumulative distribution function (CDF) 

of our binomial random variable, then we can write



Bounding the deviation

Unfortunately, the CDF we are interested in is given by

This has no nice closed form expression, and is rather 

unwieldy to work with and doesn’t give us much intuition

Instead of calculating the probability exactly, it is enough to 

get a good bound of the form

or equivalently



Concentration inequalities

An inequality of the form

tell us how a particular random variable (in this case             ) 

concentrates around its mean

There are a number of different concentration inequalities 

that give us various bounds along these lines

We will start with a very simple one, and then build up to a 

stronger result



Markov’s inequality

The simplest of these results is Markov’s inequality

Let      be any nonnegative random variable.  

Then for any          ,

This is cool on its own, but can be leveraged

to say even more since for any strictly nonotonically

increasing (nonnegative-valued) function 



Chebyshev’s inequality

As an example, Chebyshev’s inequality

states that for any random variable    ,

Proof. 

Note that                     is a nonnegative 

random variable. Thus we can apply 

Markov’s inequality to obtain



Proof of Markov (Part 1)

There is a simple proof of Markov if you know the (super 

useful!) fact that for any nonnegative random variable

Proof.

Note that we can write 

Thus



We can visualize this result as

Thus, we can immediate see that we must have

and hence

Proof of Markov (Part 2)



Hoeffding’s inequality

Chebyshev’s inequality gives us the kind of result we are 

after, but it is too loose to be of practical use

Hoeffding’s inequality assumes a bit more about our random 

variable beyond having finite variance, but gets us a much 

tighter and more useful result:

Let                     be independent bounded random variables, 

i.e., random variables such that                                for all

Let                          . Then for any          , we have



Chernoff’s bounding method

To prove this result, we will use a similar approach as in 

Chebyshev’s inequality

To begin consider only the upper tail inequality:

(Markov)

(Independence)



Hoeffding’s Lemma

It is not obvious, but it is also not too hard to show, that

The proof uses convexity and then gets a bound using a 

Taylor series expansion

Plugging this in, we obtain that for any           , we have

By setting                               , we have



Putting it all together

Thus we have proven that

An analogous argument proves

Combined, these give



Special case: Binomials

If the      are Bernoulli random variables, then      is a 

Binomial random variable and Hoeffding’s inequality becomes

Finally going back to our original problem, this means that 

Hoeffding yields the bound  



Multiple hypotheses

Thus, after much effort, we have that for a particular 

hypothesis    , 

However, we are ultimately interested in    , not just a single 

hypothesis

One way to argue that                                      is to ensure 

that                                       simultaneously for all

Equivalently, we can try to bound the probability that any

hypothesis       has an empirical risk that deviates from its 

mean by more than



Formal statement

We can express this mathematically as

We can bound this using something called the union bound



Union bound

Union bound For any sequence of events

The events in our case are given by  



Final result



Interpretation

We went through all of this work to show that

When can we be confident that                             ?

Note that

As long as     isn’t too big (             ) then we can be 

reasonably confident that

linearly

increasing

exponentially

decreasing



Are we learning yet?

It’s not quite enough to have                           

Ideally, we would like to have

Note that if                             , then                      implies 

that 

The learning problem

1. Can we ensure that            is close to             ?

2. Can we make              small enough?


