
A first look at generalization

In these notes, we will get a first look at the theory of generalization
for the binary supervised classification problem.

We observe data (xi, yi) for i = 1, . . . , n, where the xi ∈ Rd are
the “feature vectors” and the yi ∈ {0, 1} are the “class labels”. The
data are assumed to be random, in that they are independent samples
generated from some joint probability distribution on Rd×{0, 1}, but
nothing is known about this probability distribution a priori.

We will use this data to train a classifier h(x). A classifier is simply
a function which takes a feature vector and returns a class label. We
can think of it as a map from Rd → {0, 1}, or as a partition of Rd

into two regions, one of which corresponds to x that map to label 0,
the other with vectors that map to label 1.

To start, we will assume that we only have a finite number of choices
for this classifier. We will use the data to decide on one of the
classifiers in the set

H = {h1, h2, . . . , hm}.

We would like to choose the classifier that minimizes the risk, which
in this case is simply the probability of error:

R(h) = P [h(X) 6= Y ] .

The risk tells us what the long-term performance of h will be. With-
out knowledge of the distribution, however, we cannot compute this
risk, so instead we minimize the empirical risk ... in this setting,
this simply means that we choose the h ∈ H that minimizes the
number of misclassifications in the training data. The empirical risk
of a candidate classifier h working from the n samples {(xi, yi)}ni=1

1

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 12:03, January 16, 2017



is

R̂n(h) =
1

n

n∑
i=1

1{i:h(xi)6=yi}(i),

where 1A is our notation for the indicator function:

1A(t) =

{
1, t ∈ A,
0, t 6∈ A.

In short, R̂n(h) is the fraction of the n training samples that h mis-

classifies. The empirical risk R̂n(h) should be thought of as an esti-
mate for the true risk R(h); by the weak law of large numbers, we

know that R̂n(h)→ R(h) as n→∞.

We are now faced with the central question: how well does the clas-
sifier chosen by empirical risk minimization compare with the best
possible classifier in H? Set

h] = arg min
h∈H

R(h) (best possible classifier),

and

h∗ = arg min
h∈H

R̂n(h) (our classifier chosen by ERM).

We are interested in R(h∗) − R(h]) — sometimes called the excess
risk, this is the difference in the long-term performance of the clas-
sifier we have chosen and the best we could have chosen.

A direct analysis is a little tricky since h∗ depends on the (random)
data in a rather complicated way, but it turns out that we can analyze
this in a fairly straightforward way by first considering the case of a
single fixed h.
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How close is the empirical risk to the true risk?

We will start by getting a feel for how well we can assess the risk for
a particular classifier. With h fixed, we will be looking for a bound
on R̂n(h)− R(h). We can compute R̂n(h) from the data, but R(h)
is unknown.

At this point, it is critical to realize that R̂n(h) is a random variable,
as it depends on the data (xi, yi) which is random. So our bounds
will be probabilistic; we want something of the form

P
[
|R̂n(h)−R(h)| ≤ ε

]
≥ ??,

or
P
[
|R̂n(h)−R(h)| ≥ ε

]
≤ ??.

In both cases, the bound will depend on ε (as well as the number of
data points n); in the first case, we are looking for the right hand
side to be close to 1, in the second case, we are looking for the right
hand side to be close to 0.

To get the bound, we will show that R̂n(h) is a sum of independent

random variables (this is easy), then show that E[R̂n(h)] = R(h)
(also easy), and then develop a general-purpose probabilistic tail
bound that quantifies how such a sum concentrates around its mean
(this is hard).

We start by re-writing the empirical risk as a sum of independent
random variables. Let

Si =

{
1, h(xi) 6= yi,

0, h(xi) = yi.
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Since the (xi, yi) are independent and identically distributed, the Si
are independent Bernoulli random variables with

P [Si = 1] = P [h(xi) 6= yi] , P [Si = 0] = 1− P [h(xi) 6= yi] .

A simple calculation reveals that

E[Si] = R(h).

By construction,

R̂n(h) =
1

n

n∑
i=1

Si, (1)

and so

E[R̂n(h)] =
1

n

n∑
i=1

E[Si] = R(h).

We are left with the question: How close is the sum of independent
random variables 1

n

∑
i Si to its mean?

An answer to this question is given by the Hoeffding inequality:

Hoeffding Inequality. Let X1, . . . , Xn be independent ran-
dom variables that are bounded, meaning a ≤ Xi ≤ b with prob-
ability 1. Let Zn =

∑n
i=1Xi. Then for any ε ≥ 0,

P [|Zn − E[Zn]| ≥ ε] ≤ 2e−2ε
2/n(b−a)2. (2)

Applying this to R̂n(h) in (1), with a = 0, b = 1, we have

P
[
|nR̂n(h)− nR(h)| ≥ nε

]
≤ 2e−2nε

2

,
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and so
P
[
|R̂n(h)−R(h)| ≥ ε

]
≤ 2e−2nε

2

. (3)

This gives us insight into how the performance of one single clas-
sification rule on the training set generalizes. What we want is some
assurance that the one we judge to be the best, by performing ERM
on the data, will be close to the best choice we could have made.
We will get this assurance by developing a similar probability bound
that holds uniformly over all classifiers in H.

How close is the empirical minimizer to the true minimizer?

We have linked the performance of a single, fixed classifier to the
amount of data n that we have seen. By re-arranging the main
result (3) from the previous section, we see that with probability at
least 1− δ,

|R̂n(h)−R(h)| ≤
√

1

2n
log(2/δ).

But since our decision on which classifier was the best depended on
the empirical risk of all of the classifiers in H, we would like to make
sure that there empirical performance was somewhat near their ideal
performance. That is, we want to show that

max
h∈H
|R̂n(h)−R(h)| ≤ ε, (4)

with probability at least 1− δ for some appropriate choice of ε and
δ. We want to fill in the right hand side of

P

[
max
h∈H
|R̂n(h)−R(h)| > ε

]
≤ ???.

We do this by applying the union bound to our expression for
a single classifier. Recall the following fact from basic probability
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theory. If A1, . . . ,Am are arbitrary events, then the probability of
at least one of them occurring is less than the sum of their individual
probabilities:

P [A1 or A2 or · · · Am] ≤ P [A1] + P [A2] + · · · + P [Am] .

As you know, the bound above holds with equality when the sets Ai

are disjoint.

We can rewrite the event of interest as{
max
h∈H
|R̂n(h)−R(h)| > ε

}
=
{
|R̂n(h1)−R(h1)| > ε

}
or{

|R̂n(h2)−R(h2)| > ε
}

or
... ...{

|R̂n(hm)−R(hm)| > ε
}
.

Thus

P

[
max
h∈H
|R̂n(h)−R(h)| > ε

]
≤

m∑
j=1

P
[
|R̂n(hj)−R(hj)| > ε

]
≤ 2me−2nε

2

.

When the bound (4) holds, we can relate the generalization perfor-
mance of the empirical risk minimizer h∗ to the performance of the
best possible choice h]. We have1

R(h∗)−R(h]) = R(h∗)− R̂n(h
∗) + R̂n(h

∗)−R(h])

≤ |R(h∗)− R̂n(h
∗)| + |R̂n(h

∗)−R(h])|
1Note that R(h∗)−R(h]) will always be positive.
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The first term above is immediately controlled by (4). For the second
term, we combine (4) with optimality of h] and h∗ in two different
ways. Since h] is the minimizer of the true risk,

R(h]) ≤ R(h∗) ≤ R̂n(h
∗) + ε,

and since h∗ is the minimizer of the empirical risk,

R̂n(h
∗) ≤ R̂n(h

]) ≤ R(h]) + ε.

Combining the two statements above gives us |R̂n(h
∗)−R(h])| ≤ ε,

and so

max
h∈H
|R̂n(h)−R(h)| ≤ ε ⇒ R(h∗)−R(h]) ≤ 2ε.

Putting it all together gives us our main result:

P
[
R(h∗)−R(h]) > ε

]
≤ 2me−nε

2/2.

ERM with finite H. Let H be a set of classifiers with finite
size |H| = m. We are presented with n iid labeled data points
{(xi, yi)}ni=1. Let h∗ be the empirical risk minimizer,

h∗ = arg min
h∈H

R̂n(h) = arg min
h∈H

1

n

n∑
i=1

1{i:h(xi) 6=yi}(i),

and h] be the true risk minimizer

h] = arg min
h∈H

R(h) = arg min
h∈H

P [h(X) 6= Y ] .

Then with probability exceeding 1− δ

R(h∗)−R(h]) ≤
√

2

n
(logm + log(2/δ)).
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Technical Details: Proof of the Hoeffding Ineq.

We start with a basic question: how close is a single random variable
X to its mean? This question is answered by applying the following
basic result from probability theory.

Markov inequality. Let X be any non-negative random vari-
able. Then for any t ≥ 0,

P [X ≥ t] ≤ E[X ]

t
.

Proof of this statement is straightforward. For convenience, we as-
sume here that X has a probability density function fX(x), but the
result holds regardless:

E[X ] =

∫ ∞
0

x fX(x) dx

≥
∫ ∞
t

x fX(x) dx (for t ≥ 0)

≥ t

∫ ∞
t

fX(x) dx

= t · P [X ≥ t] .

The Markov inequality actually tells us much more than what is in
the box above. It is easily extended by realizing that for any function
φ(x) which is non-negative and strictly monotonically increasing,

P [X ≥ t] = P [φ(X) ≥ φ(t)] .
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We now have any number of ways to modify the bound, as

P [X ≥ t] ≤ E[φ(X)]

φ(t)
,

for any such φ. Moreover, the above holds for general random vari-
ables X , as we only need φ(X) ≥ 0 to apply Markov.

A Chernoff bound is simply an application of Markov with φ(t) =
eλt for some λ > 0:

P [X ≥ t] ≤ e−λt E[eλX ].

This is particularly useful when X is a sum of independent random
variables. For instance, suppose that Z1, Z2, . . . , Zn are iid random
variables. Then the Chernoff bound on their sum is

P [Z1 + · · · + Zn ≥ t] ≤ e−λt E[eλ(Z1+···+Zn)]

= e−λt E[eλZ1eλZ2 · · · eλZn]

= e−λt E[eλZ1] E[eλZ2] · · ·E[eλZn] (independence)

= e−λt
(
E[eλZ1]

)n
(identically dist.).

Thus we can get a tail bound on the sum by looking at moment
generating function (mgf) of one of the terms. Recall that the mgf
is the Laplace transform of the density:

mgfZ(λ) = E[eλZ] =

∫
eλzfZ(z) dz.

To get (2), Hoeffding proved the following lemma:
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Let Z be a random variable that falls in the interval [a, b] with
probability 1. Then

E
[
eλ(Z−E[Z])

]
≤ e−λ

2(b−a)2/8,

for all λ > 0.

Proof of this is not so straightforward, but in the end it just relies on
the convexity of the function eλt combined with the Taylor theorem.
The proof is done nicely on Wikipedia2.

Now if Z1, Z2, . . . , Zn are iid and fall in [a, b], we have

P

[
n∑
i=1

Zi − E[Zi] > t

]
≤ e−λtenλ

2(b−a)2/8, for all λ > 0.

The value of λ that minimizes the right hand side above is

λ =
4t

n(b− a)2
,

and so plugging this in a simplifying gives us

P

[
n∑
i=1

Zi − E[Zi] > t

]
≤ e−2t

2/n(b−a)2.

2https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
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