
Fundamental tradeoff

Recall the definitions

“Richness” of hypothesis set

Error



What is a good hypothesis?

Ideally, we would like to have a small number of hypotheses, 
so that                            , while also being lucky (or smart) 
enough to have

In general, this may not be possible, since there may not be 
any function    with      

Why not?

Noise:

Suppose we knew the joint distribution of our data
– what is the optimal classification rule     ?

– what are the fundamental limits on how small           can be?  



Known distribution case

Consider             where
• is a random vector in
• is a random variable (depending on    )

Let                                            be a classifier

with probability of error/risk given by

Our goal is to formulate a simple rule for minimizing 
when the joint distribution of              is known



Characterizations of the joint distribution

Let                   denote the joint distribution of

• We can factor this as  
– is the a priori probability of class 

– is the class conditional pdf (the pdf of                 )

• Alternatively (or via Bayes rule), we can factor this as 

– is the a posteriori probability 
of class

– is simply the marginal pdf of



The Bayes classifier

Theorem

The classifier                                          satisfies

for any possible classifier

Terminology:

• is called a Bayes classifier
• is called the Bayes risk



Proof

For convenience, assume                 is a continuous random 
variable with density          

Consider an arbitrary classifier   . Denote the decision regions



Proof (Part 2)

We can write

We want to maximize this expression, we should design our 
classifier     such that 

is maximal



Proof (Part 3)

Therefore, the optimal    has

Note that in addition to our rigorous derivation, this classifier 
also coincides with “common sense”

Bayes rule!



Variations

Different ways of expressing the Bayes classifier

•

•

• When   

• When

likelihood
ratio test

maximum likelihood
classifier/detector



Example

Suppose that              and that 

If



Example

How do we calculate the Bayes risk?

In the case where                       , our test reduced to 
declaring 1 iff , thus



Alternative cost/loss functions

So far we have focused on minimizing the risk

There are many situations where this is not appropriate

• cost-sensitive classification

– type I/type II errors or misses/false alarms may have very 
different costs, in which case a loss function of the form

– alternatively, it may be better to focus on them directly a la 
Neyman-Pearson classification

• unbalanced datasets
– when one class dominates the other, the probability of error 

will place less emphasis on the smaller class

– the class proportions in our dataset may not be 
representative of the “wild”



What about learning?

We have just seen that when we know the true distribution 
underlying our dataset, solving the classification problem is 
straightforward

In practical learning problems, all we have is the data…

One natural approach is to use the data to estimate the 
distribution, and then just plug this into the formula for the 
Bayes classifier

Plugin methods

Before we get to these, we will first talk about what is quite 
possibly the absolute simplest learning algorithm there is…



Nearest neighbor classifier

The nearest neighbor classifier is easiest to state in words:

Assign     the same label as the closest training point      to

The nearest neighbor rule defines a Vornoi partition of the 
input space



Risk of the nearest neighbor classifier

To simplify our discussion, we will restrict our attention to 
the binary case where 

Consider the Bayes risk conditioned on             :

Note that if                   , then we must have

Similarly, if                   , then 

Since            selects the label that maximizes          , we thus 
have that



Risk of the nearest neighbor classifier

Now consider the risk of the nearest neighbor classifier 
conditioned on 

Note that for a fixed    ,  we are treating      as random 

Here we will further treat               as being random since 
it depends on the training dataset

Thus we have that



Risk of the nearest neighbor classifier

Note that if         is the nearest neighbor to    , then

Thus, we can write



Intuition from asymptotics

In the limit as             , we can assume that

Thus, as               we have

It is easy to see that 

Asymptotically, the risk of the nearest neighbor classifier is 
at most twice the Bayes risk



-nearest neighbors

We can drive the factor of 2 in this result down to 1 by 
generalizing the nearest neighbor rule to the    -nearest 
neighbor rule as follows:

Assign a label to     by taking a majority vote over the     
training points     closest to    

How do we define this more mathematically?

indices of the     training points closest to

If               , then we can write the   -nearest neighbor 
classifier as



Example



Example



Example



Example



Example



Example



Example



Example



Choosing the size of the neighborhood

Setting the parameter     is a problem of model selection  

Setting     by trying to minimize the training error is a 
particularly bad idea

What is             ?

No matter what, we always have 

Not much practical guidance from the theory, so we typically 
must rely on estimates based on holdout sets or more 
sophisticated model selection techniques



Consistency

We say that a classification algorithm is consistent if when 
the size of the training set             , we have that

where      is a classifier learned from a training set of size    
and      is the Bayes risk

Theorem

Let        denote the   -nearest neighbor rule with a training 
set of size    .  If             ,             , and                , then        
is consistent, i.e.,  



Summary

Given enough data, the    -nearest neighbor classifier will do 
just as well as pretty much any other method

Catch
• The amount of required data can be huge, especially if our 

feature space is high-dimensional

• The parameter     can matter a lot, so model selection will 
can be very important

• Finding the nearest neighbors out of a set of millions of 
examples is still pretty hard
– can be sped up using k-d trees, but can still be relatively 

expensive to apply 

– in contrast, many of the other algorithms we will study have 
an expensive “training” phase, but application is cheap


