
The Bayes Classifier

We have been starting to look at the supervised classification prob-
lem: we are given data (xi, yi) for i = 1, . . . , n, where xi ∈ Rd, and
yi ∈ {1, . . . , K}. In this section, we suppose that we know every-
thing there is to know about the data (in a probabilistic sense): we
assume that we know the joint distribution of (X, Y ). If we have
full knowledge of the distribution, then we can design an optimal
classifier without seeing any data at all.

We now make the mathematical setup completely concrete. The
“feature vector” X is a random vector1 in Rd, and the “class label”
Y is a discrete random scalar in {1, . . . , K}. When we say that
we have a joint probability distribution for (X, Y ), it means that
we have a rule that assigns probabilities to events that obeys the
Kolmogorov axioms2. Given X ⊂ Rd and Y ⊂ {1, . . . , K}, the joint
distribution gives us a probability

P [X ∈ X , Y ∈ Y ] = probability that X is in X and Y is in Y .

We will treat the entries in the feature vector as continuous-valued.
Fixing the feature vector X at different points x results in different
conditional probability mass functions (pmfs) for the class label Y :

ηk(x) := pY |X(k|x) = P [Y = k|X = x] . (1)

The pmf pY |X(k|x), which is also called the a posteriori distri-
bution, will play a central role in much of our discussion here and
throughout the course. We encounter it so often that it is useful to
give it the more compact notation ηk(x).

1We use non-bold capital letters for all random variables in these notes,
whether they are scalar-, vector-, matrix-, or whatever-valued.

2https://en.wikipedia.org/wiki/Probability_axioms
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It is also useful to note that fixing the class label Y to different values
y results in different conditional probability density functions (pdfs)
for the feature vector X : fX|Y (x|y), where

P [X ∈ X |Y = y] =

∫
X
fX|Y (x|y) dx.

fX|Y (x|y) is the class conditional distribution of X , i.e., the
distribution of X given that Y belongs to class y.

A classification rule or classifier is simply a function h : Rd →
{1, . . . , K}; that is, a function which takes a feature vector and
returns a class label. We can specify this classification rule by pari-
tioning Rd into K regions Γ1(h), . . . ,ΓK(h), where Γk(h) is the set
of point that h maps to k:

Γk(h) = {x ∈ Rd : h(x) = k}.

We will judge the quality of a classifier by the probability that it
makes a mistake:

R(h) = P [h(X) 6= Y ] .

This is also called the risk of h, or the probability of error.

We can now ask a very well-defined question which has a clear-cut
answer: What is the classifier that minimizes the probability of error?
The answer is simple: given X = x, choose the class label that
maximizes the conditional probability in (1).

Theorem: Define the classifier

h∗(x) = arg max
k∈{1,...,K}

ηk(x). (2)

Then every other classifier h has

R(h) ≥ R(h∗).
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Proof: The optimality of h∗ in (2) follows from carefully writing
down the risk for an arbitrary classifier h, applying Bayes rule, and
then showing that h∗ optimizes the resulting expression. We start
with an expression for 1 − R(h), which we will show is as large as
possible when h = h∗:

1−R(h) = P [h(X) = Y ]

=
K∑
k=1

P [Y = k] · P [h(X) = k|Y = k]

=
K∑
k=1

P [Y = k]

∫
Γk(h)

fX|Y (x|k) dx

=
K∑
k=1

∫
Γk(h)

P [Y = k] fX|Y (x|k) dx.

By Bayes rule,

ηk(x) =
P [Y = k] fX|Y (x|k)∑K
`=1 P [Y = `] fX|Y (x|`)

.

Note that the denominator is a function of x that is independent of
k; it is in fact the marginal density fX(x) for X . Using this and the
fact that the regions Γk(h) are disjoint, we can continue the string of
equalities:

1−R(h) =

∫
Rd

(
K∑
k=1

1Γk(h)(x) fX(x)ηk(x)

)
dx,

where 1A(x) is the indicator function

1A(x) =

{
1, x ∈ A,
0, x 6∈ A.
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The way we choose h∗ in (2) chooses the regions so that the function
inside the integral above is as large as possible; it is clear that

K∑
k=1

1Γk(h)(x)fX(x)ηk(x) ≤
K∑
k=1

1Γk(h∗)(x)fX(x)ηk(x),

for all x ∈ Rd. Thus

1−R(h) ≤
∫
Rd

(
K∑
k=1

1Γk(h)(x) fX(x)ηk(x)

)
dx

= 1−R(h∗),

and so R(h∗) ≤ R(h).

The nearest neighbor classifier

We have just seen that the Bayes classifier is optimal. Unfortunately,
it requires complete knowledge of the conditional probability mass
function ηk(x). In the context of machine learning, this is not a
reasonable assumption. The nearest neighbor classifier is an
extremely simple alternative. For any x, we simply find the closest
point xi in the training set and then assign x the same label as its
nearest neighbor.

This is an incredibly simple rule, but perhaps somewhat surprisingly
we can show that as n → ∞, i.e., as the size of our training data
grows, this simple classifier is near-optimal. To see this, we will
consider the risk of the nearest neighbor classifier hNN conditioned
on X = x and compare this to the risk of the Bayes classifier h∗.

To make our discussion simpler, we will restrict our attention to the
case of binary classification where yi ∈ {0, 1}. We first note that the
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risk of the Bayes classifier h∗ conditioned on X = x is given by

R∗(x) := P [Y 6= h∗(x)|X = x] .

If h∗(x) = 0 then we have R∗(x) = P [Y = 1|X = x] = η1(x).
Similarly, if h∗(x) = 1 we have R∗(x) = η1(x). Since by definition
h∗(x) selects the label that maximizes ηk(x), we thus have that

R∗(x) = min{η0(x), η1(x)}. (3)

For the nearest neighbor classifier, note that

RNN(x) := P
[
hNN(x) 6= Y |X = x

]
.

In our analysis, we will treat not only (X, Y ) as random, but also
the output hNN(x) as random since it depends on the dataset, which
is itself drawn at random from the same distribution as (X, Y ). This
allows us to write

RNN(x) = P [Y = 0|X = x] P
[
hNN(x) = 1|X = x

]
+ P [Y = 1|X = x] P

[
hNN(x) = 0|X = x

]
.

(4)

If xNN denotes the nearest neighbor to x, then we can write

P
[
hNN(x) = k|X = x

]
= P [Y = k|X = xNN] = ηk(xNN).

As n→∞, we have that ‖xNN − x‖ → 0, and thus as n→∞ we
have

ηk(xNN)→ ηk(x).

Plugging this back into (4) and simplifying, we obtain

RNN(x)→ η0(x)η1(x) + η1(x)η0(x)

= 2η0(x)η1(x)

≤ 2 min{η0(x), η1(x)},
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where the last inequality follows from the fact that both η1(x) and
η2(x) are less than 1. Combining this with (3), this yields

lim
n→∞

RNN(x) ≤ 2R∗(x),

or in words, that asymptotically, the risk of the nearest neighbor
classifier is at most twice the Bayes risk.

This can be strengthened by considering the more general k-nearest
neighbors classifier. The idea here is to assign a label to x by taking
a majority vote over the k training points closest to x. If RkNN(x)
denotes the risk of the k-nearest neighbor classifier, then one can
show via a similar argument that

lim
n→∞

RkNN(x) ≤
(

1 +
√

2/k

)
R∗(x).

Thus, by increasing k it is possible to drive this multiplicative con-
stant arbitrarily close to 1. This results in a property known as
universal consistency. Specifically, if R∗ denotes the Bayes risk
and RkNN

n denotes the risk of the k-nearest neighbors classifier based
on a dataset of size n, then one can show that as n→∞, if k →∞
while k/n→ 0, then RkNN

n → R∗.

In words this is simply saying that for any possible distribution on the
data, if we are given enough data eventually the risk of the k-nearest
neighbor classifier will converge to the Bayes risk (i.e., to the optimal
risk). Unfortunately (or fortunately, depending on your perspective),
you might have to wait a very long time, so there is still a role for
other machine learning algorithms to improve on this situation when
we only have a finite amount of data.
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