Linear discriminant analysis

Linear discriminant analysis (LDA) is a common "plug-in" method for classification which operates by estimating $\pi_{k} f_{X \mid Y}(\boldsymbol{x} \mid k)$ for each class $k=0, \ldots, K-1$ and then simply plugging these into the formula for the Bayes classifier in order to make a decision. In LDA we make the (strong) assumption that class conditional pdfs are given by the multivariate normal distribution, but with differing means. Mathematically, this corresponds to the assumption that

$$
f_{X \mid Y}(\boldsymbol{x} \mid k)=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)}
$$

for $k=0, \ldots, K-1$. Note that under this assumption, each class has a distinct mean $\boldsymbol{\mu}_{k}$, but all classes share the same covariance matrix $\boldsymbol{\Sigma}$.

In LDA, we assume that $\boldsymbol{\mu}_{0}, \ldots, \boldsymbol{\mu}_{K-1}$ and $\boldsymbol{\Sigma}$, as well as the prior probabilities $\pi_{0}, \ldots, \pi_{K-1}$ are all unknown, but can be estimated from the data. In particular, we can use the estimates

$$
\begin{aligned}
\widehat{\pi}_{k} & =\frac{\left|\left\{i: y_{i}=k\right\}\right|}{n} \\
\widehat{\boldsymbol{\mu}}_{k} & =\frac{1}{\left|\left\{i: y_{i}=k\right\}\right|} \sum_{i: y_{k}=k} \boldsymbol{x}_{i} \\
\widehat{\boldsymbol{\Sigma}} & =\frac{1}{n} \sum_{k=0}^{K-1} \sum_{i: y_{i}=k}\left(\boldsymbol{x}_{i}-\widehat{\boldsymbol{\mu}}_{k}\right)\left(\boldsymbol{x}_{i}-\widehat{\boldsymbol{\mu}}_{k}\right)^{T} .
\end{aligned}
$$

The LDA classifier is then defined by

$$
\widehat{h}(\boldsymbol{x})=\underset{k}{\arg \max } \widehat{\pi}_{k} \cdot \frac{1}{(2 \pi)^{d / 2}|\widehat{\boldsymbol{\Sigma}}|^{1 / 2}} e^{-\frac{1}{2}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{k}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{-1}\left(\boldsymbol{x}-\widehat{\mu}_{k}\right)} .
$$

Since the \log is a monotonic transformation (meaning that if $x>y$ then $\log (x)>\log (y))$, we can equivalently state the classifier as

$$
\begin{aligned}
\widehat{h}(\boldsymbol{x}) & =\underset{k}{\arg \max } \log \left(\widehat{\pi}_{k}\right)+\log \left(\frac{1}{(2 \pi)^{d / 2}|\widehat{\boldsymbol{\Sigma}}|^{1 / 2}} e^{-\frac{1}{2}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{k}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{k}\right)}\right) \\
& =\underset{k}{\arg \max } \log \left(\widehat{\pi}_{k}\right)-\frac{1}{2}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{k}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{k}\right) \\
& =\underset{k}{\arg \min } \frac{1}{2}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{k}\right)^{T} \widehat{\boldsymbol{\Sigma}}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{k}\right)-\log \left(\widehat{\pi}_{k}\right)
\end{aligned}
$$

where the second equality above follows from the fact that

$$
\log \left(\frac{1}{(2 \pi)^{d / 2}|\widehat{\boldsymbol{\Sigma}}|^{1 / 2}}\right)
$$

is constant across all k and so does not affect which k maximizes the expression.

It is enlightening to consider what happens in the special case of $K=2$ (i.e., binary classification). In this case, LDA results in a classifier such that $\widehat{h}(\boldsymbol{x})=1$ when

$$
\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{0}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{0}\right)-2 \log \widehat{\pi}_{0} \geq\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{1}\right)-2 \log \widehat{\pi}_{1} .
$$

We can rewrite this as

$$
\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{0}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{0}\right)-\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{1}\right)+2 \log \frac{\widehat{\pi}_{1}}{\widehat{\pi}_{0}} \geq 0
$$

Using the fact that $\boldsymbol{\Sigma}$ is symmetric, which implies that we have

$$
\begin{aligned}
&\left(\boldsymbol{\Sigma}^{-1}\right)^{T}=\boldsymbol{\Sigma}^{-1}, \text { we can simplify this rule to } \\
& 0 \leq\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{0}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{0}\right)-\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\widehat{\boldsymbol{\mu}}_{1}\right)+2 \log \frac{\widehat{\pi}_{1}}{\widehat{\pi}_{0}} \\
&= \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}-2 \widehat{\boldsymbol{\mu}}_{0}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}+\widehat{\boldsymbol{\mu}}_{0}^{T} \boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\mu}}_{0} \\
&-\left(\boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}-2 \widehat{\boldsymbol{\mu}}_{1}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}+\widehat{\boldsymbol{\mu}}_{1}^{T} \boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\mu}}_{1}\right)+2 \log \frac{\widehat{\pi}_{1}}{\widehat{\pi}_{0}} \\
&= 2\left(\widehat{\boldsymbol{\mu}}_{1}^{T}-\widehat{\boldsymbol{\mu}}_{0}^{T}\right) \boldsymbol{\Sigma}^{-1} \boldsymbol{x}+\widehat{\boldsymbol{\mu}}_{0}^{T} \boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\mu}}_{0}-\widehat{\boldsymbol{\mu}}_{1}^{T} \boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\mu}}_{1}+2 \log \frac{\widehat{\pi}_{1}}{\widehat{\pi}_{0}} \\
&=\left(\boldsymbol{\Sigma}^{-1}\left(\widehat{\boldsymbol{\mu}}_{1}-\widehat{\boldsymbol{\mu}}_{0}\right)\right)^{T} \boldsymbol{x}+\frac{1}{2} \widehat{\boldsymbol{\mu}}_{0}^{T} \boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\mu}}_{0}-\frac{1}{2} \widehat{\boldsymbol{\mu}}_{1}^{T} \boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\mu}}_{1}+\log \frac{\widehat{\pi}_{1}}{\widehat{\pi}_{0}}
\end{aligned}
$$

Thus, if

$$
\boldsymbol{w}=\boldsymbol{\Sigma}^{-1}\left(\widehat{\boldsymbol{\mu}}_{1}-\widehat{\boldsymbol{\mu}}_{0}\right)
$$

and

$$
b=\frac{1}{2} \widehat{\boldsymbol{\mu}}_{0}^{T} \boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\mu}}_{0}-\frac{1}{2} \widehat{\boldsymbol{\mu}}_{1}^{T} \boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\mu}}_{1}+\log \frac{\widehat{\pi}_{1}}{\widehat{\pi}_{0}}
$$

we can re-write this as

$$
\boldsymbol{w}^{T} \boldsymbol{x}+b \geq 0
$$

This is the expression of a simple linear classifier, and thus LDA will always result in a linear classifier.

