
Linear discriminant analysis

Linear discriminant analysis (LDA) is a common “plug-in”
method for classification which operates by estimating πkfX|Y (x|k)
for each class k = 0, . . . , K − 1 and then simply plugging these into
the formula for the Bayes classifier in order to make a decision. In
LDA we make the (strong) assumption that class conditional pdfs
are given by the multivariate normal distribution, but with differing
means. Mathematically, this corresponds to the assumption that

fX|Y (x|k) =
1

(2π)d/2|Σ|1/2
e−

1
2(x−µk)

TΣ−1(x−µk)

for k = 0, . . . , K − 1. Note that under this assumption, each class
has a distinct mean µk, but all classes share the same covariance
matrix Σ.

In LDA, we assume that µ0, . . . ,µK−1 and Σ, as well as the prior
probabilities π0, . . . , πK−1 are all unknown, but can be estimated
from the data. In particular, we can use the estimates

π̂k =
|{i : yi = k}|

n

µ̂k =
1

|{i : yi = k}|
∑
i:yk=k

xi

Σ̂ =
1

n

K−1∑
k=0

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)
T .

The LDA classifier is then defined by

ĥ(x) = arg max
k

π̂k ·
1

(2π)d/2|Σ̂|1/2
e−

1
2(x−µ̂k)

T Σ̂
−1

(x−µ̂k).
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Since the log is a monotonic transformation (meaning that if x > y
then log(x) > log(y)), we can equivalently state the classifier as

ĥ(x) = arg max
k

log (π̂k) + log

(
1

(2π)d/2|Σ̂|1/2
e−

1
2(x−µ̂k)

T Σ̂
−1

(x−µ̂k)

)
= arg max

k
log (π̂k)−

1

2
(x− µ̂k)

TΣ̂
−1

(x− µ̂k)

= arg min
k

1

2
(x− µ̂k)

TΣ̂
−1

(x− µ̂k)− log (π̂k)

where the second equality above follows from the fact that

log

(
1

(2π)d/2|Σ̂|1/2

)

is constant across all k and so does not affect which k maximizes the
expression.

It is enlightening to consider what happens in the special case of
K = 2 (i.e., binary classification). In this case, LDA results in a

classifier such that ĥ(x) = 1 when

(x−µ̂0)
TΣ−1(x−µ̂0)−2 log π̂0 ≥ (x−µ̂1)

TΣ−1(x−µ̂1)−2 log π̂1.

We can rewrite this as

(x− µ̂0)
TΣ−1(x− µ̂0)− (x− µ̂1)

TΣ−1(x− µ̂1) + 2 log
π̂1

π̂0

≥ 0.

Using the fact that Σ is symmetric, which implies that we have
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(Σ−1)T = Σ−1, we can simplify this rule to

0 ≤ (x− µ̂0)
TΣ−1(x− µ̂0)− (x− µ̂1)

TΣ−1(x− µ̂1) + 2 log
π̂1

π̂0

= xTΣ−1x− 2µ̂T
0 Σ−1x + µ̂T

0 Σ−1µ̂0

−
(
xTΣ−1x− 2µ̂T

1 Σ−1x + µ̂T
1 Σ−1µ̂1

)
+ 2 log

π̂1

π̂0

= 2(µ̂T
1 − µ̂

T
0 )Σ−1x + µ̂T

0 Σ−1µ̂0 − µ̂
T
1 Σ−1µ̂1 + 2 log

π̂1

π̂0

= (Σ−1(µ̂1 − µ̂0))
Tx +

1

2
µ̂T

0 Σ−1µ̂0 −
1

2
µ̂T

1 Σ−1µ̂1 + log
π̂1

π̂0

.

Thus, if
w = Σ−1(µ̂1 − µ̂0)

and

b =
1

2
µ̂T

0 Σ−1µ̂0 −
1

2
µ̂T

1 Σ−1µ̂1 + log
π̂1

π̂0

,

we can re-write this as

wTx + b ≥ 0.

This is the expression of a simple linear classifier, and thus LDA will
always result in a linear classifier.
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