
The Bayes classifier

Consider             where

• is a random vector in

• is a random variable (depending on    )

Let                                            be a classifier

with probability of error/risk given by

The Bayes classifier (denoted     ) is the optimal classifier, 
i.e., the classifier with smallest possible risk

We can calculate this explicitly if we know the joint 
distribution of 

Characterizations of the joint distribution

Let                   denote the joint distribution of

• We can factor this as  
– is the a priori probability of class 

– is the class conditional pdf (the pdf of                 )

• Alternatively (or via Bayes rule), we can factor this as 

– is the a posteriori probability 
of class

– is simply the marginal pdf of

The Bayes classifier

Theorem

The classifier                                          satisfies

where the min is over all possible classifiers.

To calculate the Bayes classifier/Bayes risk, we need to know

Alternatively, since                                               , to find 
the maximum           it is sufficient to know 

Generative models and plug-in methods

The Bayes classifier requires knowledge of the joint 
distribution of             

In learning, all we have is the training data

A generative model is an assumption about the unknown 
distribution

– usually very simplistic

– often parametric

– build classifier by estimating the parameters via training data

– plug the result into formula for Bayes classifier
§ “plug-in” methods



A first plugin method: Naïve Bayes

The Naïve Bayes classifier is one common approach based on 
estimating the distribution of the data and then plugging this 
into the Bayes classifier

Makes a (probably naïve) assumption:

Let                                                     denote the random 
feature vector in a classification problem and      the 
corresponding label

The naïve Bayes classifier assumes that, given     ,  
are independent

Sometimes known as “Idiot Bayes”

What does the NB assumption buy us?

The major advantage of NB is that we only need to estimate 
scalar/univariate densities

Let                  be the probability law (density or mass 
function) of  

By the NB assumption

where                            denotes the probability law of 

Naïve Bayes classifier

Let                       be training data and set

•

• any estimate of      
based on

The NB classifier is then given by  

So, how can we determine                           ? 

Continuous features

Suppose that                       is a continuous random variable

Options for estimating                           include

– parametric estimate (e.g., Gaussian MLE)

– kernel density estimate

– quantize to a discrete random variable



Discrete features

Now suppose that                       takes only the values

Define  

for

Then a natural (maximum likelihood) estimate of 
is

Example

Example: Document classification

Suppose we wish to classify documents into categories
– 0 = politics
– 1 = sports 
– 2 = finance
– …

One simple (but useful) way to represent a document is as
with    representing the number of 

words in our “vocabulary” and          representing the number 
of times word    occurs in the document

“bag of words” model

Multinomial Naïve Bayes 

We can think of each document as consisting of     words 
which are distributed among the    choices in the vocabulary 
independently at random

– multinomial distribution

All that is required in this model is to estimate the probability 
of each word under the different categories:

• For each class   , compute the number of times each word 
appears (across all documents); denote this

• Compute the estimate



Multinomial Naïve Bayes 

With this estimate, for a new document summarized by the 
bag-of-words model                                      , we can 
compute

This gives us the classifier

Undesirable property

It is possible that after training our classifier, we may be 
given an input     where some                  for some word that 
was not observed in the training data for some class    

For such a class, our previous estimate would yield
, and hence 

In this case, class     will never be predicted

This is rather unfortunate…

Laplace smoothing

It could happen that every training document in “sports” 
contains the word “ball”

What happens when we get an article about hockey?

To avoid this problem, it is common to instead use

We can think of this as the result of adding     “pseudo-
samples” to our data to ensure that each word occurs at least 
once

Related to Laplace’s rule of succession: Lapalce smoothing
(Bayesian estimate with a Dirichlet prior)

Other variants

• Bernoulli Naïve Bayes
– used when the features are binary-valued
– example: word occurrence vectors (vs word count vectors)
– simply need to estimate probability of 1 vs 0 for each feature

• Gaussian Naïve Bayes
– models continuous features as univariate Gaussian densities
– estimates mean and variance of data to fit a Gaussian to each 

feature

• Many other extensions
– Gaussian mixture models
– kernel density estimates
– …



Linear discriminant analysis (LDA)

In linear discriminant analysis (LDA), we make a different 
assumption than Naïve Bayes

Now, we do not require the features to be independent, but 
we make the (strong) assumption that 

for 

Here                 is the multivariate Gaussian/normal 
distribution with mean     and covariance matrix

Note: Each class has the same covariance matrix

Parameter estimation

In LDA, we assume that the prior probabilities     , the mean 
vectors      , and the covariance matrix      are all unknown 

To estimate these from the data, we use  

“pooled covariance estimate”

Resulting classifier

The LDA classifier is then

squared Mahalanobis distance
between    and    

Example

Suppose that

It turns out that by setting

we can re-write this as 

linear classifier



Example

Recall that the contour                                       is an 

ellipse

picture assumes

Linear classifiers

In general, why does                        describe a 

linear classifier?

When is LDA appropriate? When is LDA appropriate?



When is LDA appropriate? When is LDA appropriate?

When is LDA appropriate? More than two classes

The decision regions are convex polytopes 
(intersections of linear half-spaces)



Quadratic discriminant analysis (QDA)

What happens if we expand the generative model to

for                               ? 

Set 

Proceed as before, only this case the decision boundaries will 
be quadratic

Example

Challenges for LDA

The generative model is rarely valid

Moreover, the number of parameters to be estimated is
• class prior probabilities: 
• means:
• covariance matrix:

If    is small and    is large, then we can accurately estimate 
these parameters (provably, using Hoeffding)

If    is small and    is large, then we have more parameters 
than observations, and will likely obtain very poor estimates 

– first apply a dimensionality reduction technique to reduce
(more on this later) 

– assume a more structured covariance matrix

Example

Structured covariance matrix:

Assume                 and estimate 

If              and               , then LDA becomes

nearest centroid
classifier



Another possible escape

Recall from the very beginning of the lecture that the Bayes 
classifier can be stated either in terms of maximizing

or

In LDA, we are estimating                     , which is equivalent 
to the full joint distribution of 

All we really need is to be able to estimate          
– we don’t need to know

LDA commits one of the cardinal sins of machine learning:

Never solve a more difficult problem
as an intermediate step

We will see a better approach to this problem next time


