
Unconstrained minimization of smooth functions

We want to solve
min
x∈RN

f (x),

where f is convex. In this section, we will assume that f is differ-
entiable (so its gradient exists at every point), and is smooth (we
will consider a few different definitions of “smooth” — qualitatively,
this just means that the gradient changes in a controlled manner as
we move from point to point).

While many problems are smooth, methods for nonsmooth f (x) are
also of great interest, and will (hopefully) be covered later in the
course. Nonsmooth methods are not much more involved algorith-
mically, but they are slightly harder to analyze.

Since f is convex, a necessary and sufficient condition for x? to be a
minimizer is that the gradient vanishes:

∇f (x?) = 0.

It is not a given that such a x? exists — it is possible that f (x) is
unbounded below. In this section, we will assume that f does have
(at least one) minimizer, and we will denote the optimal value as
p? = f (x?).

1

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



Every general-purpose optimization algorithm we will look at in this
course is iterative — they will all have the basic form:

x(0) = initial guess
k = 0
do

k = k + 1
calculate a direction to move d(k)

calculate a step size tk ≥ 0
x(k) = x(k−1) + tk d

(k)

check convergence criteria
until converged

In the coming lectures, we will focus primarily on two methods for
computing the direction d(k).

1. Gradient descent: we take

d(k) = −∇f (x(k−1)).

This is the direction of “steepest descent” (where “steepest”
is defined relative to the Euclidean norm). Gradient descent
iterations are cheap, but typically many iterations are required
for convergence.

2. Newton’s method: we build a quadratic model around x(k)

then compute the exact minimizer of this quadratic by solving
a system of equations. This corresponds to taking

d(k) = −(∇2f (x(k−1)))−1∇f (xk−1),

that is, the inverse of the Hessian evaluated at x(k−1) applied
to the gradient evaluated at the same point. Newton iterations

2

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



tend to be expensive (as they require a system solve), but
they typically converge in far fewer iterations than gradient
descent.

Whichever direction we choose, it should be a descent direction;
d(k) should satisfy

〈d(k),∇f (x(k−1))〉 ≤ 0.

Since f is convex, it is always true that

f (x + td) ≥ f (x) + t〈d,∇f (x)〉,

and so to decrease the value of the functional while moving in direc-
tion d, it is necessary that the inner product above be negative.

Line search

After the step direction is chosen, we need to compute how far to
move. There are many methods for doing this, here are three:

Exact: Solve the 1D optimization program

min
s≥0

f (x(k−1) + sd(k)).

This is typically not worth the trouble, but there are instances (i.e.
unconstrained convex quadratic programs) when it can be solved an-
alytically.

Backtracking: Start with a step size of t = 1, then decrease by a
factor of β until we are below a certain line.

3

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



Fix α ∈ (0, 0.5) and β ∈ (0, 1).
Given a starting point x and direction d,
t = 1
repeat

if f (x + td) < f (x) + α t〈d,∇f (x)〉
converged

else
t = βt

endif
until converged

Picture:

The backtracking line search tends to be cheap, and works very well
in practice. Typically, we take α small (to encourage a large step)
and β ∈ [0.3, 0.8].

Fixed: Finally, we can just use a constant step size tk = t. This
will actually work if the step size is small enough, but usually this
results in way too many iterations.

4

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



Convergence of gradient descent

How quickly does gradient descent converge?

I’m glad you asked!

We will look at two different smoothness assumptions on f , and
translate them into convergence rates. In the first case, we assume
that f is twice differentiable (so that its Hessian exists everywhere),
and that

mI � ∇2f (x) � MI.

That is, the eigenvalues of the Hessian (which is always in SN for a
convex function) are bounded between m > 0 and M <∞. We call
this assumption strong convexity (note that the lower bound by
itself means that f is strictly convex).

Recall that the main consequence of convexity is that we have a way
to compute a linear global lower bound at every point:

f (y) ≥ f (x) + 〈y − x,∇f (x)〉, for all x,y.

The main consequence of strong convexity is that we have in addition
a quadratic lower and upper bound. By the Taylor theorem, we know
that for any x,y,

f (y) = f (x) + 〈y − x,∇f (x)〉 +
1

2
(y − x)T∇2f (z)(y − x)

for some point z on the line segment between x and y. Thus we
have the bounds

f (y) ≥ f (x) + 〈y − x,∇f (x)〉 +
m

2
‖y − x‖22, (1)

5

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



and

f (y) ≤ f (x) + 〈y − x,∇f (x)〉 +
M

2
‖y − x‖22. (2)

An immediate consequence of the stronger lower bound in (1) is
that we can tell at any point x how close to optimal we are. The
smallest value the right hand side can take in that inequality is when
ỹ = x − m−1∇f (x); plugging that value into the right hand side
yields

f (y) ≥ f (x)− 1

2m
‖∇f (x)‖22,

a bound which holds for every f (y). In particular, it holds for the
optimal value p?, and so

p? ≥ f (x)− 1

2m
‖∇f (x)‖22. (3)

Thus we get a bound on f (x) − p? just by calculating the norm of
the gradient. It also re-iterates that if ‖∇f (x)‖2 is small, we are
close to the solution.

We can also bound how close x is to the minimizer x?. Using (1)
with y = x?,

p? = f (x?) ≥ f (x) + 〈x? − x,∇f (x)〉 +
m

2
‖x? − x‖22

≥ f (x)− ‖x? − x‖2 ‖∇f (x)‖2 +
m

2
‖x? − x‖22.

Then since p? ≤ f (x),

−‖x? − x‖2 ‖∇f (x)‖2 +
m

2
‖x? − x‖22 ≤ 0,

6

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



and so

‖x? − x‖2 ≤
2

m
‖∇f (x)‖2.

These facts are very useful for defining stopping criteria.

Suppose we have a strongly convex function that we minimize using
gradient descent with an exact line search. We can show that at
each iteration, the gap f (x(k))− p? gets cut down by a fixed factor.
We consider a single iteration — we will use x to denote the current
point, and x+ = x− texact∇f (x) to denote the result of the gradient
step. We choose texact by minimizing the following function:

f̃ (t) = f (x− t∇f (x)).

By strong convexity, we know that

f̃ (t) ≤ f (x)− t‖∇f (x)‖22 +
Mt2

2
‖∇f (x)‖22.

By definition of texact, we know

f (x+) = f̃ (texact) ≤ f̃ (1/M) ≤ f (x)− 1

2M
‖∇f (x)‖22.

From (3), we also know that

‖∇f (x)‖22 ≥ 2m(f (x)− p?),

and so
f (x+)− p? ≤ f (x)− p? − m

M
(f (x)− p?),

which means
f (x+)− p?

f (x)− p?
≤
(

1− m

M

)
.

7

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



That is, the gap between the current functional evaluation and the
optimal value has been cut down by a factor of 1−m/M < 1.

Applying this relationship recursively, we see that after k iterations
of gradient descent, we have

f (x(k))− p?

f (x(0))− p?
≤
(

1− m

M

)k

.

Another way to say this is that we can achieve accuracy

f (x(k))− p? ≤ ε,

by taking

k ≥ log(E0/ε)

log(1−m/M)
, E0 = f (x(0))− p?,

steps.

There are similar results for gradient descent on strongly convex func-
tions using backtracking. They are similar in nature; they have the
same linear convergence but with constants that depend on α and β
along with m and M . See [?, p. 468].

Lipschitz gradient condition

We can also get (much weaker) convergence results when f is not
strongly convex (or even necessarily twice differentiable), but rather
has a Lipschitz gradient. This means that there exists an L > 0
such that

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2. (4)

8

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



The upshot here is that we still have a quadratic upper bound for f
at every point, but not the lower bound.

To be precise, if f obeys (4), then

f (y) ≤ f (x) + 〈y − x,∇f (x)〉 +
L

2
‖y − x‖22.

This follows immediately from the fundamental theorem of calculus1:

f (y)− f (x) =

∫ 1

0

〈y − x,∇f ((1− t)x + ty)〉 dt,

and so

f(y)− f(x)− 〈y − x,∇f(x)〉 =
∫ 1

0

〈y − x,∇f((1− t)x+ ty)−∇f(x)〉 dt

≤ ‖y − x‖2
∫ 1

0

‖∇f((1− t)x+ ty)−∇f(x)‖2 dt

≤ L‖y − x‖22
∫ 1

0

t dt

=
L

2
‖y − x‖22.

Now, let’s consider running gradient descent on such a function with
a fixed step size t ≤ 1/L. As before, we denote the current iterate
as x and the next iterate at x+ = x− t∇f (x). We have

f (x+) ≤ f (x)−
(

1− Lt

2

)
t‖∇f (x)‖22

≤ f (x)− t

2
‖∇f (x)‖22,

1The 1D function f̃(t) = f((1 − t)x + ty) has derivative f̃ ′(t) = 〈y −
x,∇f ((1− t)x+ ty)〉. This is just a simple application of the chain rule.

9

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



for the range of t we are considering. By convexity of f ,

f (x) ≤ f (x?) + 〈x− x?,∇f (x)〉,

where x? is a minimizer of f , and so

f (x+) ≤ f (x?) + 〈x− x?,∇f (x)〉 − t

2
‖∇f (x)‖22,

and then substituting ∇f (x) = (x− x+)/t yields

f (x+)− f (x?) ≤ 1

t
〈x− x?,x− x+〉 − 1

2t
‖x− x+‖22

=
1

2t

(
‖x− x?‖22 − ‖x+ − x?‖22

)
.

Summing this difference over k iterations yields:

k∑
i=1

f (x(i))− f (x?) ≤ 1

2t

(
k∑

i=1

‖x(i−1) − x?‖22 − ‖x(i) − x?‖22

)
=

1

2t

(
‖x(0) − x?‖22 − ‖x(k) − x?‖22

)
≤ 1

2t
‖x(0) − x?‖22.

Since f (x(i))− f (x?) is monotonically decreasing in i, the kth term
will be smaller than the average:

f (x(k))− f (x?) ≤ 1

k

k∑
i=1

f (x(i))− f (x?)

≤ 1

2tk
‖x(0) − x?‖22.

10

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015



Note that this convergence guarantee is much slower — it is O(1/k)
in place of O(ck) for some c < 1. This is the price we pay for allowing
f to not be as smooth.

11

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 4:10, February 5, 2015


