
The Bayes classifier

Theorem

The classifier                                          satisfies

where the min is over all possible classifiers.

To calculate the Bayes classifier/Bayes risk, we need to know

Alternatively, since                                               , to find 
the maximum           it is sufficient to know 

Linear discriminant analysis (LDA)

In linear discriminant analysis (LDA), we make the (strong) 
assumption that 

for 

Here                 is the multivariate Gaussian/normal 
distribution with mean     and covariance matrix

Note: Each class has the same covariance matrix

Example

Suppose that

It turns out that by setting

we can re-write this as 

linear classifier

Challenges for LDA

The generative model is rarely valid

Moreover, the number of parameters to be estimated is
• class prior probabilities: 
• means:
• covariance matrix:

If    is small and    is large, then we can accurately estimate 
these parameters (provably, using Hoeffding)

If    is small and    is large, then we have more parameters 
than observations, and will likely obtain very poor estimates 

– first apply a dimensionality reduction technique to reduce
(more on this later) 

– assume a more structured covariance matrix



Another possible escape

Recall from the very beginning of the lecture that the Bayes 
classifier can be stated either in terms of maximizing

or

In LDA, we are estimating                     , which is equivalent 
to the full joint distribution of 

All we really need is to be able to estimate          
– we don’t need to know

LDA commits one of the cardinal sins of machine learning:

Never solve a more difficult problem
as an intermediate step

Is there a better approach?

Another look at plugin methods

Suppose            

Define

In this case, another way to express the Bayes classifier is as

Note that we do not actually need to know the full 
distribution of             to express the Bayes classifier 

All we really need is to decide if

Gaussian case

Suppose that                and that

Logistic regression

This observation gives rise to another class of plugin methods, 
the most important of which is logisitic regression, which 
implements the following strategy

1. Assume                                          (             ,          )

2. Directly estimate          (somehow) from the data

3. Plug the estimate                                        

into the formula for the Bayes classifier



The logistic function

The function          is called a logistic function (or a sigmoid
function in other contexts)

The logistic regression classifier

Denote the logistic regression classifier by

Note that

So linear classifier

Example Estimating the parameters

Challenge: How to estimate the parameters for

One possibility:

Alternative: Maximum likelihood estimation

For convenience, let’s let 

Note that          is really a function of both     and   , so we 
will use the notation              to highlight this dependence



The a posteriori probability of our data

Suppose that we knew   .  Then we could compute

Because of independence, we also have that

Maximum likelihood estimation

We don’t actually know   , but we do know 

Suppose we view                  to be fixed, and view
as just a function of

When we do this,                                                         is 
called the likelihood (or likelihood function)

The method of maximum likelihood aims to estimate     by 
finding the    that maximizes the likelihood

In practice, it is often more convenient to focus on 
maximizing the log-likelihood, i.e., 

The log-likelihood

To see why, note that the likelihood in our case is given by

Thus, the log-likelihood is given by

It is often easier to work with summations instead of 
products, and since the log is a monotonic transformation, 
maximizing         is equivalent to maximizing

Simplifying the log-likelihood

Notation

•

•

This means that                            , which lets us write

Thus, if we let                      , then we can write



Simplifying the log-likelihood

Facts:

Simplifying the log-likelihood

Facts:

Thus

Maximizing the log-likelihood

How can we maximize

with respect to    ?

Find a     such that

(i.e., compute the partial derivatives and set them to zero)

Computing the gradient

It is not too hard to show that

This gives us            equations, but they are nonlinear and 
have no closed-form solution



Optimization

Throughout signal processing and machine learning, we will 
very often encounter problems of the form

(or                             for today)

In many (most?) cases, we cannot compute the solution simply 
by setting                      and solving for

However, there are many powerful algorithms for finding
using a computer  

Gradient descent

A simple way to try to find the minimum of our objective 
function is to iteratively “roll downhill”

From     , take a step in the direction of the negative gradient

: “step size”

Convergence of gradient descent

The core iteration of gradient descent is to compute

Note that if                             , then we have found the 
minimum and                  , so the algorithm will terminate

If    is convex and sufficiently smooth, then gradient descent 
(with a fixed step size   ) is guaranteed to converge to the 
global minimum of

convex not
convex

Step size matters!

Even though gradient descent provably converges, it can 
potentially take a while



Step size matters!

Even though gradient descent provably converges, it can 
potentially take a while

Newton’s method

Also known as the Newton-Raphson method, this approach 
can be viewed as simply using the second derivative to 
automatically select an appropriate step size

Hessian
matrix

Optimization for logistic regression

The negative log-likelihood in logistic regression is a convex 
function

Both gradient descent and Newton’s method are common 
strategies for setting the parameters in logistic regression

Newton’s method is much faster when the dimension    is 
small, but is impractical when    is large

Why?

More on this on next week’s homework

Comparison of plugin methods

Naïve Bayes, LDA, and logistic regression are all plugin 
methods that result in linear classifiers

Naïve Bayes
– plugin method based on density estimation  

– scales well to high-dimensions and naturally handles mixture 
of discrete and continuous features 

Linear discriminant analysis
– better if Gaussianity assumptions are valid

Logistic regression
– models only the distribution of        , not

– valid for a larger class of distributions

– fewer parameters to estimate



Beyond plugin methods

Plugin methods can be useful in practice, but ultimately they 
are very limited

• There are always distributions where our assumptions are 
violated

• If our assumptions are wrong, the output is totally 
unpredictable

• Can be hard to verify whether our assumptions are right

• Require solving a more difficult problem as an intermediate 
step

For most of the remainder of this course will focus on 
nonparametric methods that avoid making such strong 
assumptions about the (unknown) process generating the data


