Convergence of Newton's Method

Suppose that $f(\boldsymbol{x})$ is strongly convex,

$$
m \mathbf{I} \preceq \nabla^{2} f(\boldsymbol{x}) \preceq m \mathbf{I}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{N},
$$

and that its Hessian is Lipschitz,

$$
\left\|\nabla^{2} f(\boldsymbol{x})-\nabla^{2} f(\boldsymbol{y})\right\| \leq L\|\boldsymbol{x}-\boldsymbol{y}\|_{2} .
$$

(The norm on the left-hand side above is the standard operator norm.) We will show that the Newton algorithm coupled with an exact line search ${ }^{1}$ converges to precision ϵ :

$$
f\left(\boldsymbol{x}^{(k)}\right)-p^{\star} \leq \epsilon,
$$

for a number of iterations

$$
k \geq C_{1}\left(f\left(\boldsymbol{x}^{(0)}\right)-p^{\star}\right)+\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right)
$$

where we can take the constants above to be $C_{1}=M^{2} L^{2} / m^{5}$ and $\epsilon_{0}=2 m^{3} / L^{2}$. Qualitatively, this says that Newton's method takes a constant number of iterations to converge to any reasonable precision - we can bound $\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right) \leq 6$ (say) for ridiculously small values of ϵ.

To establish this result, we break the analysis into two stages. In the first, the damped Newton stage, we are far from the solution (as measured by $\left.\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2}\right)$, but we make constant progress towards the answer. Specifically, we will show that in this stage,

$$
f\left(\boldsymbol{x}^{(k+1)}\right)-f\left(\boldsymbol{x}^{(k)}\right) \leq 1 / C_{1} .
$$

[^0]It is clear, then, that the number of damped Newton steps is no greater than $C_{1}\left(f\left(\boldsymbol{x}^{(0)}\right)-p^{\star}\right)$.

We will then show that when $\| \nabla f\left(\boldsymbol{x}^{(k)} \|_{2}\right.$ is small enough, the gap closes dramatically at every iteration. We call this the quadratic convergence stage, as we will be able to show that once the algorithm enters this stage at iteration ℓ, for all $k>\ell$,

$$
\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2} \leq C_{2} \cdot 2^{-2^{k-\ell}},
$$

where $C_{2}=L /\left(2 m^{2}\right)$ is another constant.
Damped phase: We are in this stage when

$$
\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2} \geq m^{2} / L
$$

We take $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+t_{\text {exact }} \boldsymbol{d}^{(k+1)}$, where

$$
\boldsymbol{d}^{(k+1)}=-\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)^{-1} \nabla f\left(\boldsymbol{x}^{(k)}\right),
$$

and $t_{\text {exact }}$ is the result of an exact line search ${ }^{2}$:

$$
t_{\text {exact }}=\arg \min _{0 \leq t \leq 1} f\left(\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k+1)}\right)
$$

With the current Newton decrement denoted as

$$
\lambda_{k}^{2}=-\nabla f\left(\boldsymbol{x}^{(k)}\right)^{\mathrm{T}} \boldsymbol{d}^{(k+1)}=\left\|\boldsymbol{d}^{(k+1)}\right\|_{2}^{2},
$$

we know that

$$
\begin{aligned}
f\left(\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k+1)}\right) & \leq f\left(\boldsymbol{x}^{(k)}\right)-t \lambda_{k}^{2}+\frac{M}{2}\left\|t \boldsymbol{d}^{(k+1)}\right\|_{2}^{2} \\
& \leq f\left(\boldsymbol{x}^{(k)}\right)-t \lambda_{k}^{2}+\frac{M}{2 m} t^{2} \lambda_{k}^{2},
\end{aligned}
$$

[^1]where the second step follows from the fact that the largest eigenvalue of $\left[\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)\right]^{-1}$ is at most $1 / m$. Plugging in $t=m / M$ above yields
\[

$$
\begin{aligned}
f\left(\boldsymbol{x}^{(k)}+t_{\text {exact }} \boldsymbol{d}^{(k+1)}\right)-f\left(\boldsymbol{x}^{(k)}\right) & \leq-\frac{m}{M} \lambda_{k}^{2} \\
& \leq-\frac{m}{M^{2}}\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2}^{2} \\
& \leq-\frac{m^{5}}{L^{2} M^{2}}
\end{aligned}
$$
\]

Quadratic convergence: When

$$
\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2}<m^{2} / L
$$

we start to settle things very quickly. We will assume that in this stage, we choose the step size to be $t=1$. In fact, you can show that under very mild assumptions on the backtracking parameter ($\alpha<1 / 3$, to be specific), backtracking will indeed not backtrack at all and return $t=1$ (see [?, p. 490]).

We start by pointing out that by construction,

$$
\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right) \boldsymbol{d}^{(k+1)}=-\nabla f\left(\boldsymbol{x}^{(k)}\right)
$$

and so by the Taylor theorem

$$
\begin{aligned}
\nabla f\left(\boldsymbol{x}^{(k+1)}\right) & =\nabla f\left(\boldsymbol{x}^{(k)}+\boldsymbol{d}^{(k+1)}\right)-\nabla f\left(\boldsymbol{x}^{(k)}\right)-\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right) \boldsymbol{d}^{(k+1)} \\
& =\int_{0}^{1} \nabla^{2} f\left(\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k+1)}\right) \boldsymbol{d}^{(k+1)} \mathrm{d} t-\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right) \boldsymbol{d}^{(k+1)} \\
& =\int_{0}^{1}\left[\nabla^{2} f\left(\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k+1)}\right)-\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)\right] \boldsymbol{d}^{(k+1)} \mathrm{d} t
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|\nabla f\left(\boldsymbol{x}^{(k+1)}\right)\right\|_{2} & \leq \int_{0}^{1}\left\|\nabla^{2} f\left(\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k+1)}\right)-\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)\right\| \cdot\left\|\boldsymbol{d}^{(k+1)}\right\|_{2} \mathrm{~d} t \\
& \leq \int_{0}^{1} t^{2} L\left\|\boldsymbol{d}^{(k+1)}\right\|_{2}^{2} \mathrm{~d} t \\
& =\frac{L}{2}\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)^{-1} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2}^{2} \\
& \leq \frac{L}{2 m^{2}}\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2}^{2} .
\end{aligned}
$$

Since $\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2} \leq m^{2} / L$, we have

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(\boldsymbol{x}^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2}\right)^{2} \leq\left(\frac{1}{2}\right)^{2}
$$

That is, at every iteration, we are squaring the error (which is less than $1 / 2$). If we entered this stage at iteration ℓ, this means

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(\boldsymbol{x}^{(\ell)}\right)\right\|_{2}\right)^{2^{k-\ell}} \leq\left(\frac{1}{2}\right)^{2^{k-\ell}}
$$

Then using the strong convexity of f,

$$
f\left(\boldsymbol{x}^{(k)}\right)-p^{\star} \leq \frac{1}{2 m}\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|_{2}^{2} \leq \frac{2 m^{3}}{L^{2}}\left(\frac{1}{2}\right)^{2^{k-\ell+1}}
$$

The right hand side above is less than ϵ when

$$
k-\ell+1 \geq \log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right), \quad \epsilon_{0}=2 m^{3} / L^{2}
$$

so we spend no more than $\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right)$ iterations in this phase.
Note that

$$
\epsilon=10^{-20} \epsilon_{0} \quad \Rightarrow \quad \log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right)=6.0539
$$

[^0]: ${ }^{1}$ These results are easily extended to backtracking line searches; we are just using an exact line search to make the exposition easier. See [?, Sec. 9.5.3] for the analysis with backtracking.

[^1]: ${ }^{2}$ For convenience, we are not letting t be larger than 1 , just as in a backtracking method.

