
Convergence of Newton’s Method

Suppose that f (x) is strongly convex,

mI � ∇2f (x) � mI, ∀x ∈ RN ,

and that its Hessian is Lipschitz,

‖∇2f (x)−∇2f (y)‖ ≤ L‖x− y‖2.

(The norm on the left-hand side above is the standard operator
norm.) We will show that the Newton algorithm coupled with an
exact line search1 converges to precision ε:

f (x(k))− p? ≤ ε,

for a number of iterations

k ≥ C1

(
f (x(0))− p?

)
+ log2 log2(ε0/ε),

where we can take the constants above to be C1 = M 2L2/m5 and
ε0 = 2m3/L2. Qualitatively, this says that Newton’s method takes a
constant number of iterations to converge to any reasonable precision
— we can bound log2 log2(ε0/ε) ≤ 6 (say) for ridiculously small values
of ε.

To establish this result, we break the analysis into two stages. In
the first, the damped Newton stage, we are far from the solution (as
measured by ‖∇f (x(k))‖2), but we make constant progress towards
the answer. Specifically, we will show that in this stage,

f (x(k+1))− f (x(k)) ≤ 1/C1.

1These results are easily extended to backtracking line searches; we are just
using an exact line search to make the exposition easier. See [?, Sec. 9.5.3]
for the analysis with backtracking.
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It is clear, then, that the number of damped Newton steps is no
greater than C1

(
f (x(0))− p?

)
.

We will then show that when ‖∇f (x(k)‖2 is small enough, the gap
closes dramatically at every iteration. We call this the quadratic
convergence stage, as we will be able to show that once the algorithm
enters this stage at iteration `, for all k > `,

‖∇f (x(k))‖2 ≤ C2 · 2−2
k−`

,

where C2 = L/(2m2) is another constant.

Damped phase: We are in this stage when

‖∇f (x(k))‖2 ≥ m2/L.

We take x(k+1) = x(k) + texactd
(k+1), where

d(k+1) = −∇2f (x(k))−1∇f (x(k)),

and texact is the result of an exact line search2:

texact = arg min
0≤t≤1

f (x(k) + td(k+1)).

With the current Newton decrement denoted as

λ2
k = −∇f (x(k))Td(k+1) = ‖d(k+1)‖22,

we know that

f (x(k) + td(k+1)) ≤ f (x(k))− tλ2
k +

M

2
‖td(k+1)‖22

≤ f (x(k))− tλ2
k +

M

2m
t2λ2

k,

2For convenience, we are not letting t be larger than 1, just as in a back-
tracking method.
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where the second step follows from the fact that the largest eigenvalue
of [∇2f (x(k))]−1 is at most 1/m. Plugging in t = m/M above yields

f (x(k) + texactd
(k+1))− f (x(k)) ≤ −m

M
λ2
k

≤ − m

M 2
‖∇f (x(k))‖22

≤ − m5

L2M 2
.

Quadratic convergence: When

‖∇f (x(k))‖2 < m2/L,

we start to settle things very quickly. We will assume that in this
stage, we choose the step size to be t = 1. In fact, you can show
that under very mild assumptions on the backtracking parameter
(α < 1/3, to be specific), backtracking will indeed not backtrack at
all and return t = 1 (see [?, p. 490]).

We start by pointing out that by construction,

∇2f (x(k))d(k+1) = −∇f (x(k)),

and so by the Taylor theorem

∇f (x(k+1)) = ∇f (x(k) + d(k+1))−∇f (x(k))−∇2f (x(k))d(k+1)

=

∫ 1

0

∇2f (x(k) + td(k+1))d(k+1) dt−∇2f (x(k))d(k+1)

=

∫ 1

0

[
∇2f (x(k) + td(k+1))−∇2f (x(k))

]
d(k+1) dt.
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Thus

‖∇f (x(k+1))‖2 ≤
∫ 1

0

‖∇2f (x(k) + td(k+1))−∇2f (x(k))‖ · ‖d(k+1)‖2 dt

≤
∫ 1

0

t2L‖d(k+1)‖22 dt

=
L

2
‖∇f (x(k))−1∇f (x(k))‖22

≤ L

2m2
‖∇f (x(k))‖22.

Since ‖∇f (x(k))‖2 ≤ m2/L, we have

L

2m2
‖∇f (x(k+1))‖2 ≤

(
L

2m2
‖∇f (x(k))‖2

)2

≤
(

1

2

)2

.

That is, at every iteration, we are squaring the error (which is less
than 1/2). If we entered this stage at iteration `, this means

L

2m2
‖∇f (x(k))‖2 ≤

(
L

2m2
‖∇f (x(`))‖2

)2k−`

≤
(

1

2

)2k−`

.

Then using the strong convexity of f ,

f (x(k))− p? ≤ 1

2m
‖∇f (x(k))‖22 ≤

2m3

L2

(
1

2

)2k−`+1

.

The right hand side above is less than ε when

k − ` + 1 ≥ log2 log2(ε0/ε), ε0 = 2m3/L2,

so we spend no more than log2 log2(ε0/ε) iterations in this phase.

Note that

ε = 10−20ε0 ⇒ log2 log2(ε0/ε) = 6.0539.
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