
Beyond plugin methods

Plugin methods can be useful in practice, but ultimately they 
are very limited

• There are always distributions where our assumptions are 
violated

• If our assumptions are wrong, the output is totally 
unpredictable

• Can be hard to verify whether our assumptions are right

• Require solving a more difficult problem as an intermediate 
step

Most of the remainder of this course will focus on 
nonparametric methods that avoid making such strong 
assumptions about the (unknown) process generating the data

Suppose              and that 

By setting                                          , we can reduce any 
linear classifier to comparing          to a threshold for some 

Single layer neural network

How to learn     ? 

Nonparametric linear classifiers

Frank Rosenblatt (1957)

Given 

• training data

• a guess for 

Pick any    (i.e., pick any of
our observations), and update 
according to 

Perceptron Learning Algorithm (PLA) Iterate

Simply repeat this process

That’s it!

Why might this work?

If             and                                    ,
the update results in a bigger

Similarly, if                and                                , then the
update makes                   smaller

pushes in the 
right direction



Another perspective

The core iteration of the PLA is                                

We can also write this as

You will encounter an expression that looks a lot like this on 
the next homework…

PLA as stochastic gradient descent

In the next homework, you will implement a stochastic 
gradient descent version of logistic regression, where each 
update is of the form

In contrast, the PLA consists of updates of the form

Provable guarantees for the PLA

We can view the PLA as simply stochastic gradient descent 
applied to a slightly different likelihood function than we 
considered in the context of logistic regression

However, we can also provide very simple proofs that, under 
certain (nonparametric) assumptions, the PLA will result in a 
good classifier

In particular, we will see that if the training data is linearly 
separable, then the PLA will find a separating hyperplane
in a finite number of iterations

Linearly separable data sets

We say that a data set                       is linearly separable if 
there exists               and            such that

for 

We refer to                                  as a 
separating hyperplane



How can we find a separating hyperplane?

One approach is to use the PLA

You will prove this on the next homework, but to see roughly 
how the proof works, we need to do a bit of geometry first

Let         define a hyperplane, and pick two points
on the hyperplane, then 

Hence,     is orthogonal to all vectors that are parallel to the 
hyperplane

Geometry of separating hyperplanes

We call        the normal vector to the hyperplane
It is unique up to its sign 

Question 
Let            .  How far is    from                                          ?

Write                           where                          and

Distance to the hyperplane

We can get a formula for the distance from    to
by observing that 

PLA finds a separating hyperplane

Theorem
If a separating hyperplane exists, then the PLA will find one in 
finitely many iterations.

Let      define a separating hyperplane normalized so that

calculates the distance from the hyperplane to the closest      
in the training data, and let                            .

Suppose that we count iterations as the number of actual 
updates to    , i.e., we assume that at each iteration we 
select an    such that                                   and update 
according to



PLA finds a separating hyperplane

Under these assumptions, you can (will!) show that if at 
iteration    there exists an      such that                                 , 
then we necessarily have   

Said differently, if   

then we must have found a separating hyperplane

Drawbacks
– we don’t know    

– a separating hyperplane may not be the best hyperplane

Are all separating hyperplanes equal? 

The maximum margin hyperplane

The margin of a separating hyperplane is the distance from 
the hyperplane to the closest

The maximum margin or optimal separating hyperplane is 
the solution of  

Larger margin        better generalization to new data

Canonical form

Our parameterization of a hyperplane as a normal vector  
and an offset    is overdetermined

– e.g., in      we are using three parameters to describe a line, 
which really only needs two 

Another way of seeing this is to realize that 

describes the same hyperplane for all 

It is often useful to remove this ambiguity by choosing a 
particular scaling. In the case of a separating hyperplane, we 
will say           are in canonical form if
• for all 
• for some



Maximum margin revisited

If we restrict ourselves to hyperplanes in canonical form, then

Thus we can express                                                as

Optimal separating hyperplanes

• This is an example of a constrained optimization program 
– in particular, a quadratic program

• At the solution, there will always be at least some     such 
that                               .

These are called support vectors

• This optimization problem forms the core idea behind
support vector machines

What if our data is not linearly separable?

The plugin methods we described can naturally accommodate 
data that isn’t perfectly linearly separable

How can we extend the notion of an optimal separating 
hyperplane to the case of data that is not separable?

The constraint that                                for every training 
sample can only be satisfied for separable data

Idea: Introduce slack variables                         that allow us 
to violate some of the constraints by changing them to

How should we set                  ?     

Optimal soft-margin hyperplane

We would ideally like for most of the     to be zero
Note that if     is misclassified, then     
Hence, our training error 

The optimal soft-margin hyperplane is given by

is a “cost” parameter set by the user



Setting the cost parameter

allows us to trade off between fitting the data and having a 
large “margin”

It also controls the influence of outliers

We will discuss strategies for setting     in more detail later on

large
small

Other linear classifiers

• Variants of the perceptron/single-layer neural nets
• least squares approaches
• linear programming approaches
• Bayesian approaches (“relevance vector machines”)
• …

Nonlinear feature maps

Sometimes linear classifiers are terrible!

One way to create nonlinear estimators or classifiers is to first 
transform the data via a nonlinear feature map

After applying     , we can then try applying a linear method 
to the transformed data

Example

This data set is not linearly 
separable

Consider the mapping

Is the dataset linearly separable after applying this feature 
map? 

More on this next time…


