
Beyond plugin methods

Plugin methods can be useful in practice, but ultimately they
are very limited

• There are always distributions where our assumptions are
violated

• If our assumptions are wrong, the output is totally
unpredictable

• Can be hard to verify whether our assumptions are right

• Require solving a more difficult problem as an intermediate
step

Most of the remainder of this course will focus on
nonparametric methods that avoid making such strong
assumptions about the (unknown) process generating the data

Suppose and that

By setting , we can reduce any
linear classifier to comparing to a threshold for some

Single layer neural network

How to learn ?

Nonparametric linear classifiers

Frank Rosenblatt (1957)

Given

• training data

• a guess for

Pick any (i.e., pick any of
our observations), and update
according to

Perceptron Learning Algorithm (PLA) Iterate

Simply repeat this process

That’s it!

Why might this work?

If and ,
the update results in a bigger

Similarly, if and , then the
update makes smaller

pushes in the
right direction

Another perspective

The core iteration of the PLA is

We can also write this as

You will encounter an expression that looks a lot like this on
the next homework…

PLA as stochastic gradient descent

In the next homework, you will implement a stochastic
gradient descent version of logistic regression, where each
update is of the form

In contrast, the PLA consists of updates of the form

Provable guarantees for the PLA

We can view the PLA as simply stochastic gradient descent
applied to a slightly different likelihood function than we
considered in the context of logistic regression

However, we can also provide very simple proofs that, under
certain (nonparametric) assumptions, the PLA will result in a
good classifier

In particular, we will see that if the training data is linearly
separable, then the PLA will find a separating hyperplane
in a finite number of iterations

Linearly separable data sets

We say that a data set is linearly separable if
there exists and such that

for

We refer to as a
separating hyperplane

How can we find a separating hyperplane?

One approach is to use the PLA

You will prove this on the next homework, but to see roughly
how the proof works, we need to do a bit of geometry first

Let define a hyperplane, and pick two points
on the hyperplane, then

Hence, is orthogonal to all vectors that are parallel to the
hyperplane

Geometry of separating hyperplanes

We call the normal vector to the hyperplane
It is unique up to its sign

Question
Let . How far is from ?

Write where and

Distance to the hyperplane

We can get a formula for the distance from to
by observing that

PLA finds a separating hyperplane

Theorem
If a separating hyperplane exists, then the PLA will find one in
finitely many iterations.

Let define a separating hyperplane normalized so that

calculates the distance from the hyperplane to the closest
in the training data, and let .

Suppose that we count iterations as the number of actual
updates to , i.e., we assume that at each iteration we
select an such that and update
according to

PLA finds a separating hyperplane

Under these assumptions, you can (will!) show that if at
iteration there exists an such that ,
then we necessarily have

Said differently, if

then we must have found a separating hyperplane

Drawbacks
– we don’t know

– a separating hyperplane may not be the best hyperplane

Are all separating hyperplanes equal?

The maximum margin hyperplane

The margin of a separating hyperplane is the distance from
the hyperplane to the closest

The maximum margin or optimal separating hyperplane is
the solution of

Larger margin better generalization to new data

Canonical form

Our parameterization of a hyperplane as a normal vector
and an offset is overdetermined

– e.g., in we are using three parameters to describe a line,
which really only needs two

Another way of seeing this is to realize that

describes the same hyperplane for all

It is often useful to remove this ambiguity by choosing a
particular scaling. In the case of a separating hyperplane, we
will say are in canonical form if
• for all
• for some

Maximum margin revisited

If we restrict ourselves to hyperplanes in canonical form, then

Thus we can express as

Optimal separating hyperplanes

• This is an example of a constrained optimization program
– in particular, a quadratic program

• At the solution, there will always be at least some such
that .

These are called support vectors

• This optimization problem forms the core idea behind
support vector machines

What if our data is not linearly separable?

The plugin methods we described can naturally accommodate
data that isn’t perfectly linearly separable

How can we extend the notion of an optimal separating
hyperplane to the case of data that is not separable?

The constraint that for every training
sample can only be satisfied for separable data

Idea: Introduce slack variables that allow us
to violate some of the constraints by changing them to

How should we set ?

Optimal soft-margin hyperplane

We would ideally like for most of the to be zero
Note that if is misclassified, then
Hence, our training error

The optimal soft-margin hyperplane is given by

is a “cost” parameter set by the user

Setting the cost parameter

allows us to trade off between fitting the data and having a
large “margin”

It also controls the influence of outliers

We will discuss strategies for setting in more detail later on

large
small

Other linear classifiers

• Variants of the perceptron/single-layer neural nets
• least squares approaches
• linear programming approaches
• Bayesian approaches (“relevance vector machines”)
• …

Nonlinear feature maps

Sometimes linear classifiers are terrible!

One way to create nonlinear estimators or classifiers is to first
transform the data via a nonlinear feature map

After applying , we can then try applying a linear method
to the transformed data

Example

This data set is not linearly
separable

Consider the mapping

Is the dataset linearly separable after applying this feature
map?

More on this next time…

