
Linear methods for supervised learning

• LDA

• Logistic regression

• Naïve Bayes

• PLA

• Maximum margin hyperplanes

• Soft-margin hyperplanes

• Least squares resgression

• Ridge regression

• …

Nonlinear feature maps

Sometimes linear methods (in both regression and 
classification) just don’t work

One way to create nonlinear estimators or classifiers is to first 
transform the data via a nonlinear feature map

After applying     , we can then try applying a linear method 
to the transformed data

Classification

This data set is not linearly 
separable

Consider the mapping

The dataset is linearly separable after applying this feature 
map:  

Issues with nonlinear feature maps

Suppose we transform our data via

where

• If          , then this can lead to problems with overfitting
– you can always find a separating hyperplane

• In addition, however, when    is very large, there can be an 
increased computational burden



The “kernel trick”

Fortunately, there is a clever way to get around this 
computational challenge by exploiting two facts:

• Many machine learning algorithms only involve the data 
through inner products

• For many interesting feature maps    , the function

has a simple, closed form expression that can be evaluated 
without explicitly calculating           and

standard 
dot product

Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner 
products:

• nearest-neighbor classifiers

Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner 
products:

• maximum margin hyperplanes

it is a fact that the optimal     can be expressed as
for some choice of 

Quadratic kernel



Quadratic kernel

What is      and what is the dimension     of the corresponding 
feature space?

Nonhomogeneous quadratic kernel

In this case, the corresponding             is similar to the 
homogenous quadratic kernel, but it also replicates 

Polynomial kernels

In general

Multinomial theorem

Inner product kernel

Definition. An inner product kernel is a mapping 

for which there exists an inner product space      and a 
mapping                       such that

for all 

Given a function             , how can we tell when it is an inner 
product kernel?

• Mercer’s theorem 

• Positive semidefinite property



Positive semidefinite kernels

We say that              is a positive semidefinite kernel if

• is symmetric

• for all     and all                          , the Gram matrix
defined by   

is positive semidefinite, i.e.,                   for all 

Theorem

is an inner product kernel if and only if    is a positive 
semidefinite kernel

Proof: (Future homework)

Examples: Polynomial kernels

Homogeneous polynomial kernel

Inhomogenous polynomial kernel

maps to the set of all monomials of degree 

Examples: Gaussian/RBF kernels

Gaussian / Radial basis function (RBF) kernel:

One can show that     is a positive semidefinite kernel, but 
what is      ?

is infinite dimensional!

Kernels in action: SVMs

In order to understand both

• how to kernelize the maximum margin optimization 
problem

• how to actually solve this optimization problem with a 
practical algorithm

we will need to spend a bit of time learning about 
constrained optimization

This stuff is super useful, even outside of this context



Constrained optimization

A general constrained optimization problem has the form

where             

We call          the objective function

If satisfies all the constraints, we say that    is feasible

We will assume that          is defined for all feasible 

The Lagrangian

It is possible to convert a constrained optimization problem 
into an unconstrained one via the Lagrangian function

In this case, the Lagrangian is given by

Lagrangian duality

The Lagrangian provides a way to bound or solve the original 
optimization problem via a different optimization problem

If we have the Lagrangian

and                               are called

Lagrange multipliers or dual variables 

The (Lagrange) dual function is

The dual optimization problem

We can then define the dual optimization problem

Why do we constrain            ?

Interesting Fact: No matter the choice of          or    ,                  
is always concave



The primal optimization problem

The primal function is

and the primal optimization problem is

Contrast this with the dual optimization problem

What is so “primal” about the primal?

Suppose    is feasible 

Suppose    is not feasible

The primal encompasses the original problem (i.e., they have 
the same solution), yet it is unconstrained

Weak duality

Theorem

Proof  
Let    be feasible.  Then for any         with            ,

Hence

Weak duality

Theorem

Proof  

Thus, for any         with            , we have

Since this holds for any       , we can take the max to obtain



Duality gap

We have just shown that for any optimization problem, we 
can solve the dual (which is always a concave maximization 
problem), and obtain a lower bound     on     (the optimal 
value of the objective function for the original problem)

The difference              is called the duality gap

In general, all we can say about the duality gap is that

, but sometimes we are lucky…

If             , we say that strong duality holds

The KKT conditions

Assume that             are all differentiable

The Karush-Kuhn-Tucker (KKT) conditions are a set of 
properties that must hold under strong duality

The KKT conditions will allow us to translate between 
solutions of the primal and dual optimization problems 

The KKT conditions

1.

2.

3.

4.

5.

(complementary slackness) 

KKT conditions and convex problems

Theorem

If the original problem is convex, meaning that    and the     
are convex and the     are affine, and                satisfy the 
KKT conditions, then    is primal optimal,            is dual 
optimal, and the duality gap is zero (             ).

Moreover, if             ,      is primal optimal, and              is 
dual optimal, then the KKT conditions hold.

Proof: See notes.



KKT conditions: Necessity

Theorem

If             ,      is primal optimal, and              is dual optimal, 
then the KKT conditions hold.

Proof

• 2 and 3 hold because      must be feasible

• 4 holds by the definition of the dual problem

• To prove 5, note that from strong duality, we have

(by 2,3, and 4)

KKT conditions: Necessity

• This shows that the two inequalities are actually equalities, 
and hence the equality of the last two lines implies

which implies that                             , which is 5

• Equality of the 2nd and 3rd lines implies that      is a 
minimizer of                      with respect to   , and hence

which establishes 1 

KKT conditions: Sufficiency

Theorem

If the original problem is convex, meaning that    and the     
are convex and the     are affine, and                satisfy the 
KKT conditions, then    is primal optimal,            is dual 
optimal, and the duality gap is zero.

Proof

• 2 and 3 imply that     is feasible

• 4 implies that                   is convex in   , and so 1 means 
that    is a minimizer of                    

• Thus

(by feasibility and 5)

KKT conditions: Sufficiency

• If                                then

• But earlier we proved that            , and hence it must 
actually be that             , and thus we have
– zero duality gap

– is primal optimal

– is dual optimal



KKT conditions: The bottom line

If a constrained optimization problem is

• differentiable

• convex

then the KKT conditions are necessary and sufficient for 
primal/dual optimality (with zero duality gap)

In this case, we can use the KKT conditions to find a solution 
to our optimization problem

i.e., if we find                    satisfying the conditions, we have 
found solutions to both the primal and dual problems


