Linear methods for supervised learning Nonlinear feature maps

« LDA Sometimes linear methods (in both regression and

« Logistic regression classification) just don’t work

» Naive Bayes

« PLA One way to create nonlinear estimators or classifiers is to first

transform the data via a nonlinear feature map

Maximum margin hyperplanes
Soft-margin hyperplanes ® R - RP
Least squares resgression
Ridge regression

After applying ©, we can then try applying a linear method

to the transformed data ®(x1), ..., P(x,)
Classification Issues with nonlinear feature maps
li This data set is not linearly Suppose we transform our data via
separable (> (z)]
z(1) &
B Consider the mapping X = : - D(x) =
) : . C 1 z(d)
* z(1) > ()
ox) = | 23 h > d _ _
I(l)fL‘(Q) where p
v 50(1)2 o If p > n, then this can lead to problems with overfitting
| z(2) i - you can always find a separating hyperplane
The dataset is linearly separable after applying this feature « In addition, however, when p is very large, there can be an

map: w = [—1,0,0,0, 1, 1]T increased computational burden



The “kernel trick”

Fortunately, there is a clever way to get around this
computational challenge by exploiting two facts:

» Many machine learning algorithms only involve the data
through inner products

« For many interesting feature maps P, the function
k(x, X)) 1= (P(x), P(x)) = d(x) D (x)

has a simple, closed form expression that can be evaluated
without explicitly calculating ®(x) and P (x')

() = standard
’ dot product

Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner
products:

e maximum margin hyperplanes

1
(w*,b*) = arg min =||w||3

W’
s.t. yi(wix;+b)>1fori=1,...,n
it is a fact that the optimal w can be expressed as
n .
w =) ", a;X; for some choice of a;
2
w3 = ||y aixi||5 = 207y aiaj(xi, x;)

wix; = (3 ax) x = 370 aj(xi,x;)

Kernel-based classifiers

Algorithms we’ve seen that only need to compute inner
products:

« nearest-neighbor classifiers

I — xil13 = (x — %, % — x3)
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Quadratic kernel

d

S u(@0() + 3 u(@u() - v(@)v() =(D (), d(v))
i=1 i%j

What is ® and what is the dimension p of the corresponding
feature space?

d(un) = [u(l)z, ou(d)?, ...

V2u(Du(2),. .., vV2u(d — 1)u(d)]T

d(d—1)

=d
p +2

Polynomial kernels

In general
k(u,v) = (u'v)"

= > (" Ju@ye) - u@yo(dy
partitions J1ye050d
(J1ye--Ja)

Multinomial theorem
(w1t taz)" = )

partitions
(F15---Ja)

m . .
J1 Jd
) xl .. a’:d

J1s -5 Jd

m

@ (u) =[ ( ' )u(1)j1...u(d)jd,...r

J1s -5 Jd

Nonhomogeneous quadratic kernel

kE(u,v) = (u'v4+1)2 = (u!v)2+2u'v+1

In this case, the corresponding ®(u) is similar to the
homogenous quadratic kernel, but it also replicates u

d(u) = [1,\/§u(1),...,\/Eu(d),u(l)Q,...,u(d)Q,...
V2u(Du(2),. .., vV2u(d — 1)u(d)]T

Inner product kernel

Definition. An inner product kernel is a mapping
k:RYxRY— R
for which there exists an inner product space F and a
mapping & : R?Y — F such that
k(u,v) = (®(u), P(v))r

forallu,v € R

Given a function k(u, v), how can we tell when it is an inner
product kernel?

» Mercer’s theorem
» Positive semidefinite property



Positive semidefinite kernels

We say that k(u, v) is a positive semidefinite kernel if
o kis symmetric
e forall n and all x1,...,%X, € R% the Gram matrix K

defined by o
K('L)]) = k(xia Xj)

is positive semidefinite, i.e., xTKx > 0 for all x

Theorem

k is an inner product kernel if and only if £ is a positive
semidefinite kernel

Proof: (Future homework)

Examples: Gaussian/RBF kernels

Gaussian / Radial basis function (RBF) kernel:

_ull2
k(u,v) = (2702)~%2 exp P
202

k(u,v) = exp (_—Hu — VH%)

202

One can show that k is a positive semidefinite kernel, but
what is F ?

F is infinite dimensional!

Examples: Polynomial kernels

Homogeneous polynomial kernel

k(u,v) = (u’v)™ m=12...

Inhomogenous polynomial kernel

k(u,v) = (ul'v 4+ )™ m=1,2,...
c>0

@ maps to the set of all monomials of degree < m

Kernels in action: SVMs

In order to understand both

« how to kernelize the maximum margin optimization
problem

« how to actually solve this optimization problem with a
practical algorithm

we will need to spend a bit of time learning about
constrained optimization

DETOUR

This stuff is super useful, even outside of this context



Constrained optimization

A general constrained optimization problem has the form
min f(x)
X
s.t. i(x) <0 i=1,...,m
hi(X)ZO ’i=1,...,p
where x € R?
We call f(x) the objective function
If X satisfies all the constraints, we say that X is feasible

We will assume that f(x) is defined for all feasible x

Lagrangian duality

The Lagrangian provides a way to bound or solve the original

optimization problem via a different optimization problem

If we have the Lagrangian
m p
LA v) = F(X) + ) Xigi(x) + > vihi(x)
i=1 i=1

A=[A\1,..., ] and v = [v1,...,1,]" are called
Lagrange multipliers or dual variables

The (Lagrange) dual function is

Lp(A,v) =min L(x,\,v)

The Lagrangian

It is possible to convert a constrained optimization problem
into an unconstrained one via the Lagrangian function

min f(x)
s.t. gi(x) <0 i=1,...,m
hi(X):O izl,...,p

In this case, the Lagrangian is given by
m p
L(x, A v) 1= f(x) + ) Xigi(x) + Y vihi(x)
i=1 i=1

Ai >0

The dual optimization problem

We can then define the dual optimization problem
max Lp(\,v)
AV
st. >0 i=1,....,m
Why do we constrain \; > 0?7

Interesting Fact: No matter the choice of f, gi, orh;,
Lp(A,v) is always concave



The primal optimization problem

The primal function is

Lp(x) := Jmax L(x,\,v)

and the primal optimization problem is

min L = min max L A,V
X P(X) X ALINSO (X7 ) )

Contrast this with the dual optimization problem

max min L(x, A, v)
Av:IA>0 x

Weak duality

Theorem d*:= max min L(x,\,v)
Av:IA>0 x

<min max L(x,A\,v)=
X  AviA>0 ( ) p

Proof
Let X be feasible. Then for any A, v with \; > O,

LA v) = f(X) + Z Nigi(X) + Z vihi(X) < f(X)

Hence Lp(A\,v) = mln L(x A V)

< m|n L(x,\,v)
feasible x

< min  f(x)=7p"

feasible x

What is so “primal” about the primal?

X

in I R I
min p(x) mm)\mj»;o (x,\,v)

Suppose x is feasible

Lp(x) = ,max f(x) + Z igi(x) + Z vihi(x)
i=1 i=1

viA>0
=f (X)
Suppose x is not feasible
Lp(x) = o0

The primal encompasses the original problem (i.e., they have
the same solution), yet it is unconstrained

Weak duality

Theorem d*:= max min L(x,\,v)
Av:IA>0 x

< min max L(x,A\,v)=
X AviA>0 ( ) p

Proof
Thus, for any A, v with A\; > 0, we have

min L(x,A,v) <p*
X
Since this holds for any A\, v, we can take the max to obtain

d*"= max min L(x,\,v) <
Av:IA>0 x ( ) p



Duality gap

We have just shown that for any optimization problem, we
can solve the dual (which is always a concave maximization
problem), and obtain a lower bound d*on p* (the optimal
value of the objective function for the original problem)

The difference p* — d* is called the duality gap

In general, all we can say about the duality gap is that
p" —d" > 0, but sometimes we are lucky...

If p* = d*, we say that strong duality holds

The KKT conditions

m P
1. VD) + ) NVax) + Z ViVhi(x*) =0

=1 =1
2. gi(x") <0, i=1,....,m
3. hl(X*)=0, 1=1,...,p

4.X >0, i=1,...,m

5. N gi(x*) =0 i=1,...,m
(complementary slackness)

The KKT conditions

Assume that f, gi, h; are all differentiable

The Karush-Kuhn-Tucker (KKT) conditions are a set of
properties that must hold under strong duality

The KKT conditions will allow us to translate between
solutions of the primal and dual optimization problems

x* = arg min Lp(x)
(A%, v*) = argmax Lp(A,v)
Av:A>0

KKT conditions and convex problems

Theorem

If the original problem is convex, meaning_that f and the g;
are convex and the h; are affine, and (X, A, ) satisfy the
KKT conditions, then X is primal optimal, (A, ) is dual
optimal, and the duality gap is zero (p* = d¥).

Moreover, if p* = d*, x*is primal optimal, and (A", v*) s
dual optimal, then the KKT conditions hold.

Proof: See notes.



KKT conditions: Necessity

Theorem

If p* = d*, x* is primal optimal, and (A", ") is dual optimal,

then the KKT conditions hold.
Proof
« 2 and 3 hold because x* must be feasible
» 4 holds by the definition of the dual problem
» To prove 5, note that from strong duality, we have
f(x*) = Lp(A\*,v")
=min f(x)+ Z Agi(x) + Z v; hi(x)

< f(x) + Z A*gz(x*) + Z u*h (x*)

< f(x*) (by2 3, and 4)

KKT conditions: Sufficiency

Theorem

If the original problem is convex, meaningjhgt f and the g;
are convex and the h¢~are affine, and (X, A, ) satisfy the
KKT conditions, then X is primal optimal, (A, ) is dual
optimal, and the duality gap is zero.

Proof

« 2 and 3 imply that X is feasible

« 4 implies that L(x,A,v) is convex in X, and so 1 means
that X is a minimizer of L(x, A, V)

e Thus Lp(A, ) = L(X, A, D)
= f(X) + Z Nigi(X) + Z vihi(X)
= f(x) (by feasibility and 5)

KKT conditions: Necessity

» This shows that the two inequalities are actually equalities,
and hence the equality of the last two lines implies

FE)+D Nax) + > vrhi(x) = F(x7)
which implies that >, A\7gi(x*) = O, which is 5

 Equality of the 2" and 3" lines implies that x* is a
minimizer of L(x, A*,v*) with respect to X, and hence

VL(x*,A*,v*) =0

which establishes 1

KKT conditions: Sufficiency

e If Lp(A, D) = f(X) thend* = _max_ Lp(A,v)

> LD()\ I/)
= f(®)
>p"

« But earlier we proved that d* < p’, and hence it must
actually be that d* = p*, and thus we have
- zero duality gap
- 5i~is primal optimal
- (A, V) s dual optimal



KKT conditions: The bottom line

If a constrained optimization problem is

o differentiable
e convex

then the KKT conditions are necessary and sufficient for
primal/dual optimality (with zero duality gap)

In this case, we can use the KKT conditions to find a solution
to our optimization problem

i.e., if we find (x*, A", ") satisfying the conditions, we have
found solutions to both the primal and dual problems



