
Kernels

We have learned several ways to find linear classifiers (LDA, logistic
regression, perceptron, maximum margin) for feature vectors x ∈ Rd

and binary class labels y ∈ {−1, 1}. In this section, we will see how
we can create nonlinear classifiers by first transforming the data
with a nonlinear feature map,

Φ : Rd → Rp,

and then training a linear classifier on Φ(x1),Φ(x2), . . . ,Φ(xn).

A quick example shows how this works. Consider the following data
with x ∈ R2:

In this case, every linear classifier is pretty awful. However, we can
see that the simple rule

x(1)2 + x(2)2 − 1 ≶ 0, (1)

will separate the data. This rule is nonlinear in R2, but we can find a
Φ(·) that makes it linear in a higher dimensional space. In particular,
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consider the following map in to R6:

Φ(x) =



1
x(1)
x(2)
x(1)2

x(2)2√
2x(1)x(2)

 .

The the linear rule on the mapped data in R6,

θTΦ(x) ≶ 0, θ =


−1
0
0
1
1
0


corresponds to the nonlinear rule (1) in R2.

The introduction of the mapping Φ(·) greatly enriches the set of
choices we have for a classifier. This enrichment comes at a cost,
however, as now the algorithms to fit the classifier are working in
Rp instead of Rd, and typically p � n. For example, the quadratic
mapping above had d = 2 and p = 6; for general d, we will have
p = (d2 + 3d + 2)/2, and so p is proportional to d2. When d is on
the order of 103, this can be a problem.

Fortunately, there is a trick that allows us to fit linear classifiers in
this high dimensional space while still working in Rd, and in fact,
we will not even have to compute the Φ(xi) on the training data.
Suppose that we have a classification algorithm that works only with
distances and inner products between data points. Then all we need
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is a function k(·, ·) that computes1:

k(x,x′) = 〈Φ(x),Φ(x′)〉 = Φ(x′)TΦ(x).

Note that this would also give us a way to compute distances, as:

k(x− x′,x− x′) = ‖Φ(x)−Φ(x′)‖22.

An example of a classification algorithm that only needs distances
between data points is k-nearest neighbor. We will also see how the
optimization program for finding a maximum margin hyperplane can
be recast to only depend on inner products between data points; this
will eventually lead to what is known as a support vector machine
(SVM)2

We will start with a couple of examples of k(·, ·) that are easy to
compute and correspond to inner products between feature maps in
high dimensions.

Quadratic Kernels

Consider the simple act of taking an inner product and squaring it:

k(u,v) = (uTv)2.

We might ask: does k(u,v) = 〈Φ(u),Φ(v)〉 for some nonlinear map
Φ(·)? If so, what is it and what is the corresponding p?

1Here and below, we will use 〈·, ·〉 to denote an inner product
2SVM = maximum margin + a kernel.
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Expanding the expression above provides the answer:

(uTv)2 =

(
d∑

i=1

u(i)v(i)

)2

=

(
d∑

i=1

u(i)v(i)

)(
d∑

j=1

u(j)v(j)

)

=
d∑

i=1

d∑
j=1

u(i)v(i)u(j)v(j)

=
d∑

i=1

u(i)2v(i)2 +
∑
i 6=j

u(i)u(j) · v(i)v(j)

= 〈Φ(u),Φ(v)〉

where

Φ(u) =



u(1)2
...

u(d)2√
2u(1)u(2)

...√
2u(1)u(d)√
2u(2)u(3)

...

...√
2u(d− 1)u(d)


In this case p = d + d(d− 1)/2.

A related mapping is the nonhomogenous quadratic kernel

k(u,v) = (uTv + 1)2.

In this case, calculations similar to the one above show that the
corresponding Φ(u) will replicate u and then include all its quadratic
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terms:

k(u,v) = (uTv + 1)2 = (uTv)2 + 2uTv + 1 = 〈Φ(u),Φ(v)〉,
where

Φ(u) =



1√
2u(1)

...√
2u(d)
u(1)2

...
u(d)2√

2u(1)u(2)
...
...√

2u(d− 1)u(d).


In this case, p = 1 + d + d + d(d− 1)/2 = (d2 + 3d + 2)/2.

Polynomial Kernels

We can just as well consider arbitrary orders:

k(u,v) = (uTv)m =

(
d∑

i=1

u(i)v(i)

)m

.

We can expand the term on the right above using the multinomial
theorem3. For x1, . . . , xd ∈ R, we have for any integer m,

(x1 + x2 + · · · + xd)
m =

∑
(j1,...,jd)∈P

(
m

j1, . . . , jd

)
xj1
1 x

j2
2 · · · xjd

d ,

3The Wikipedia article on this is decent, https://en.wikipedia.org/
wiki/Multinomial_theorem.
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where P is the set of multi-indexes that sum to m,

P =

{
j1, . . . , jd | ki ≥ 0,

d∑
i=1

ji = m

}
,

and (
m

j1, . . . , jd

)
=

m!

j1!j2! · · · jd!
.

Thus

k(u,v) =
∑

(j1,...,jd)∈P

(
m

j1, . . . , jd

)
u(1)j1v(1)j1 · · ·u(d)jdv(d)jd,

and we can take

Φ(u) =


...√(

m
j1,...,jd

)
u(1)j1 · · ·u(d)jd

...


The dimension of Φ(u) is now much, much larger than d. It is
something like ∼ dm.
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Inner Product Kernels

We are now ready to ask a general question:

What kinds of functions k(u,v) correspond to inner products
between nonlinear mappings of u and v?

We can answer this question in a very concrete mathematical way.
But first, we should carefully define what we are looking for. We
want to determine whether or not a particular k(u,v) corresponds
to an inner product in a higher dimensional space. This space might
be infinite dimensional, and hence more abstract that our standard
vector space Rp.

A Hilbert space is collection of objects (e.g. functions of continuous
variables, or infinite sequences of numbers) that has some notion
of inner product (and hence norm and distance) associated with it.
These spaces are very similar to Rp in that we can do thing like project
onto subspaces (i.e. solve least-squares problems), diagonalize linear
operators using something like the SVD, and define linear functionals
using inner products. The main difference is that they can be infinite
dimensional, and so there are always technical convergence concerns
that have to be handled in a principled manner.

We say that H is a (real-valued) Hilbert space if

1. H is a linear vector space4. This essentially means that H is
closed under linear combinations: if f , g ∈ H, then αf+βg ∈
H for all α, β ∈ R.

2. There is an associated inner product 〈·, ·〉 : H×H → R that

4See https://en.wikipedia.org/wiki/Vector_space for a complete def-
inition.
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obeys the three rules:

a) Symmetry: 〈f , g〉 = 〈g,f〉 for all f , g ∈ H.

b) Linearity: 〈α1f 1 + α2f 2, g〉 = α1〈f 1, g〉 + α2〈f 2, g〉 for
all f 1,f 2, g ∈ H and α1, α2 ∈ R.

c) 〈f ,f〉 ≥ 0 for all f ∈ H, and 〈f ,f〉 = 0⇔ f = 0.

Having a valid inner product immediately imbues H with two im-
portant types of structure:

• a distance defined through the induced norm:

‖f − g‖ =
√
〈f − g,f − g〉,

• the angle θ between two elements of H:

cos θ =
〈f , g〉
‖f‖ ‖g‖

These definitions are exactly the same as they are in Euclidean space,
and that is the point: if you have an inner product, all your fa-
vorite geometrical results generalize. Here are three more examples
of things that are very familiar in Rp, but are also true in general
Hilbert spaces:

Pythagorean theorem If 〈f , g〉 = 0, then

‖f + g‖2 = ‖f‖2 + ‖g‖2

Cauchy-Schwarz For any f , g ∈ H,

|〈f , g〉| ≤ ‖f‖ · ‖g‖
with equality holding if and only if f and g are colinear: f =
αg for some α ∈ R.
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Triangle inequality For general f , g ∈ H,

‖f + g‖ ≤ ‖f‖ + ‖g‖.
If f = αg for α > 0, then

‖f + g‖ = ‖f‖ + ‖g‖.

Basically what all of this means is that we have all of the mathemat-
ical structure in place to make the problem of fitting a separating
hyperplane well-posed.

We now return to our central question of what kinds of kernels corre-
spond to mappings into inner product (Hilbert) spaces. The following
definition is central to the answer:

Definition: We say that k(·, ·) : Rd × Rd → R is a symmetric
positive semi-definite kernel (PSD kernel) if the following hold:

1. k(u,v) = k(v,u) for all u,v ∈ Rd,

2. for all n ∈ N and all x1, . . . ,xn ∈ Rd, the matrix K with
entries

K(i, j) = k(xi,xj)

is positive semidefinite, meaning zTKz ≥ 0 for all z ∈ Rn.

Given a kernel function k(u,v), there exists a Hilbert space H
with associated inner product 〈·, ·〉 and mapping Φ : Rd → H
with

〈Φ(u),Φ(v)〉 = k(u,v),

if and only if k is a PSD kernel.

9

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 20:57, February 6, 2017



To see this, first notice that when we fix one of the inputs to the
kernel k, it becomes a function on Rd. By convention, we will fix
the second argument, writing fv(x) = k(x,v). As we vary v, this
function changes.

We will take H as the space of functions with domain Rd that can
be written as a finite linear combination of “columns” of the kernel
k(u,v). More precisely, all f ∈ H are functions f : Rd → R that
can be written as

f (x) =
N∑
i=1

αik(x,vi) (2)

for some natural number N , some sequence of vectors v1, . . . ,vN ∈
Rd, and some sequence of scalars α1, . . . , αN ∈ R. A simpler way to
say this is that

H = Span
{
k(·,v), v ∈ Rd

}
.

Now for two such functions f , g ∈ H,

f (x) =
N∑
i=1

αik(x,vi), g(x) =
M∑
j=1

βjk(x,wj),

we consider the following candidate for the inner product:

〈f , g〉 =
N∑
i=1

M∑
j=1

αiβj k(vi,wj). (3)

If we take Φ : Rd → H as

Φ(u) = k(·,u),

then
〈Φ(u),Φ(v)〉 = k(u,v),
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since for k(·,u) we can take N = 1, α1 = 1 in the representation (2),
and similarly for k(·,v). It still remains to show that this is indeed
a valid inner product on H.

Your first concern might be that the N, {vi}, {αi},M, {wi}, {βi}
are not unique, and indeed there could in general be many different
choices that lead to the same f and g. But over all such choices, the
inner product above will evaluate to the same thing, as

〈f , g〉 =
N∑
i=1

M∑
j=1

αiβj k(vi,wj) =
M∑
j=1

βjf (wj) =
N∑
i=1

αig(vi). (4)

Now we verify that (3) meets the three criteria for an inner product
when k(u,v) is symmetric positive semi-definite kernel.

Symmetry follows immediately from the symmetry of k(u,v). The
linearity property is also straightforward to verify given the form of
(3). For the third property, consider that for a fixed f ∈ H,

〈f ,f〉 =
N∑
i=1

N∑
j=1

αiαjk(vi,vj) = αTKα,

where α ∈ RN contains the αi, and K is the N × N matrix with
entries K(i, j) = k(vi,vj). Since k(·, ·) is a symmetric positive
semidefinite kernel, we know that αTKα ≥ 0. It is also clear that
f = 0⇒ 〈f ,f〉 = 0.

It remains to show that 〈f ,f〉 = 0⇒ f = 0. Suppose that indeed
〈f ,f〉 = 0, then consider f evaluated at an arbitrary x ∈ Rd:

|f (x)| =
∣∣∣∣∣

N∑
i=1

αik(x,vi)

∣∣∣∣∣
= |〈f , k(·,x)〉| ,
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where the second equality follows from the fact that k(·,x) ∈ H
and (4). Using properties of 〈·, ·〉 we have established so far and
the variation of the Cauchy-Schwarz inequality in Lemma 1 in the
Technical Details section below, we have

|f (x)|2 ≤ 〈f ,f〉〈k(·,x), k(·,x)〉 = 0.

Thus f (x) = 0 for all x ∈ Rd, and so f = 0.

Other important examples of kernels

So far, we have only explicitly talked about polynomial kernels, where
the mapping Φ(·) leads us to another finite (albeit high) dimensional
space. There are plenty of examples of kernels used in practice that
lead to infinite dimensional Hilbert spaces.

Perhaps the most prominent example is the Gaussian kernel:

k(u,v) = exp

(
−‖u− v‖

2
2

2σ2

)
,

where σ2 is a width parameter that we choose. The Hilbert space
associated with this kernel is the space of all functionals on Rd that
can be approximated arbitrarily well by a finite number of multidi-
mensional “Gaussian bump” functionals at different locations. This
Hilbert space is infinite dimensional ... it can be shown5 that for any
set of N distinct points v1, . . . ,vN , the matrix

K(i, j) = exp

(
−‖vi − vj‖22

2σ2

)
,

5See C. A. Micchelli, Algebraic aspects of interpolation, 1986.

12

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 20:57, February 6, 2017



has a rank ofN — this means that the functions k(·,v1), . . . , k(·,vN)
are linearly independent. Since N can be made arbitrarily large,
there are a set of linearly independent vectors in H with unbounded
size, meaning the dimension of H is infinite.

The Gaussian kernel is one example of a radial basis function; it
is a function of two d-dimensional vectors that depends only on the
distance between them. We might consider similar kernels

k(u,v) = r(‖u− v‖),

where we could use different functions r : R → R and notions of
distance ‖ · ‖. Other popular choices for r(·) include B-splines or
Laplacian functions. The dimension of the resulting spaces depends
of course on properties of the distance measure and r.
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Technical Details

This is a variation on the Cauchy-Schwarz inequality:

Lemma 1 Suppose that Q(·, ·) is a symmetric bilinear function
on a real-valued vector space H obeying

1. Q(f , g) = Q(g,f ) for all f , g ∈ H,
2. Q(α1f + α2h, g) = α1Q(f , g) + α2Q(h, g), and

3. Q(f ,f ) ≥ 0,

for all f , g,h ∈ H and α1, α2 ∈ R. Then

|Q(f , g)|2 ≤ Q(f ,f )Q(g, g).

Proof For any f , g ∈ H, the properties of Q(·, ·) tell us that
Q(f + g,f + g) ≥ 0, and

Q(f + g,f + g) = Q(f ,f ) + 2Q(f , g) + Q(g, g).

Since the expression above holds for all f , g ∈ H, and H is a linear
vector space, it must hold for αf and βg for all α, β ∈ R, meaning

α2Q(f ,f ) + 2αβ Q(f , g) + β2Q(g, g) ≥ 0, for all α, β ∈ R.

This is the same as saying that[
α β

] [Q(f ,f ) Q(f , g)
Q(f , g) Q(g, g)

] [
α
β

]
≥ 0,

which means that the 2×2 matrix above is symmetric positive semi-
definite for all f , g. This means that its determinant is non-negative,
and so

Q(f ,f )Q(g, g)− |Q(f , g)|2 ≥ 0.
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