
Support Vector Machines

Support vector machines (SVMs) are one of the central concepts
in all of machine learning. They are simply a combination of two
ideas: linear classification via maximum (or optimal soft) margin
hyperplanes, and kernels.

Conceptually, give training data (xi, yi), i = 1, . . . , n, with xi ∈ Rd

and yi ∈ {−1,+1}, we are going to

1. Put the feature vectors through a nonlinear map: xi → Φ(xi).
This takes them from Rd to some abstract Hilbert space H.

2. Fit a linear classifier in H. Since H has a valid inner product,
there is a notion of inner product (hence projections onto sub-
spaces) and distance in H, making this problem well-defined.

3. Translate the rule back to a function (classifier) in Rd using

h(x) = sign (〈w,Φ(x)〉 + b)

The “trick” is that step 1 is actually implicit. By using a kernel, we
avoid having to actually compute the map. This is also true for the
inner product 〈w,Φ(x)〉; we will see that this can also be computed
using a kernel.

To see how this works, we turn to our recently acquired knowledge
of constrained optimization and duality.

1

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



Dual of optimal soft margin

The optimal soft-margin classifier is found by solving

(SM) minimize
b,w,ξ

1

2
‖w‖22 +

C

n

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n.

ξi ≥ 0, i = 1, . . . , n.

If we try to solve this program after we map xi → Φ(xi), then the
optimization program is looking for a w in the same space as Φ(xi).
Since this space will in general be much higher dimensional than
Rd — and indeed could very well be infinite dimensional — this is
problematic.

Fortunately, duality and the KKT conditions will come to our rescue.

Here are two facts, which we verify in the later sections of these notes.

1. The dual of program (SM) is

(DSM) maximize
α∈Rn

− 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi

subject to
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C/n, i = 1, . . . , n.

Note that this is an optimization program in n variables. In
fact, just like (SM), it is a (concave) quadratic program with
linear equality and inequality constraints.

2

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



2. Given the solution α∗ to the dual, we can easily compute the
primal solution w∗, b∗. The weights w∗ are computed as

w∗ =
n∑

n=1

α∗iyixi.

Recall that the weights are used to define a linear functional
which the classifier evaluates, and note that the expression
above implies

w∗Tx =
n∑

i=1

α∗iyix
T
i x.

The offset b∗ is simply1

b∗ = yi0 −w∗Txi0 = yi0 −
n∑

i=1

α∗iyix
T
i xi0, (1)

where i0 is any index where the inequality constraint for αi0 is
slack: 0 < αi0 < C/n.

The kernelized dual

The dual program and the computation of the affine functionalw∗Tx+
b∗ rely on computations of inner products between feature vectors.
We can kernelize the procedure above by replacing the inner products
with a kernel evaluation,

xT
i xj → k(xi,xj),

1In practice, you might average the associated values over all such indexes
that have this property.

3

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



where k(·, ·) is a symmetric positive semidefinite kernel. As we have
seen, k(xi,xj) = 〈Φ(xi),Φ(xj)〉 for some associated nonlinear map-
ping Φ(·) and inner product 〈·, ·〉 in an abstract Hilbert space.

We compute α∗ by solving

(KDSM) maximize
α∈RN

− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj k(xi,xj) +
n∑

i=1

αi

subject to
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C/n, i = 1, . . . , n.

Notice that no matter what k(·, ·) is, this is an optimization program
in Rn. Given a solution α∗ to the above, we define our classifier as

h∗(x) = sign

(
n∑

i=1

α∗iyi k(xi,x) + b∗
)
, (2)

where b∗ is defined as in (1). Notice that back in the feature space
Rd, this classifier is in general nonlinear, as the set{

x ∈ Rd :
n∑

i=1

α∗iyi k(xi,x) = b∗
}
,

is no longer a hyperplane. It is some smooth surface that depends
on the properties of k(·, ·) (and of course the data).

The term support vector machine means solving the optimization
program (KDSM) to implement the classifier (2). As we dig a little
deeper into how the dual is derived, we will see where this term
“support vector” comes from.

4

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



General approach to “kernelization”

Optimal soft margin is not the only linear machine learning algorithm
that can be kernelized. It can be applied to other classification and
regression algorithms as well (we will see more on the regression side
of things a little later in the course).

There are three main steps to kernelizing an algorithm:

1. Show that the training process depends only on inner products
between input feature vectors, xT

i xj .

2. Show that the applying the decision rule to a general x only
involves computing inner products (i.e. wTx). (This means
that your classification rule is linear.)

3. Replace all inner products with evaluations of the kernel func-
tion k(·, ·).

In short, this idea of kernleization has applications well beyond SVMs.

5

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



Technical details: Primals and duals in convex
programming

For a general convex program2 with inequality constraints,

(P) minimize
x

f (x)

subject to gm(x) ≤ 0, m = 1, . . . ,M

the Lagragian is

L(x,λ) = f (x) +
M∑

m=1

λm gm(x).

Recall that if x0 is feasible, meaning

gm(x0) ≤ 0, for all m = 1, . . . ,M,

then clearly
L(x0, λ) ≤ f (x0) for all λ ≥ 0.

And in fact,
max
λ≥0

L(x0,λ) = f (x0).

Note that if x′ is not feasible (gm(x′) > 0 for some m), then

max
λ≥0

L(x′,λ) = +∞.

Thus solving (P) is the same as solving

minimize
x

maximize
λ≥0

L(x,λ).

2This means that f(·) and the gm(·) are convex functions.

6

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



The dual optimization program switches the order of the min and
max, solving

(D) maximize
λ

d(λ)

subject to λ ≥ 0,

where
d(λ) = min

x
L(x,λ).

If p∗ is the optimal value of the primal program (P) and d∗ is the
optimal value of the dual (D), then it is always true that d∗ ≤ p∗.
Under certain conditions on the constraint functions gm(x), we have
strong duality, meaning d∗ = p∗. One example of these conditions is
that the gm(x) are affine3, which is the case for optimal soft margin.

In addition, when the gm(x) are affine, the KKT conditions are nec-
essary and sufficient. That is, any solution x∗ to the primal (P) and
any solution λ∗ to the dual (D) will obey:

gm(x∗) ≤ 0, m = 1, . . . ,M,

λm ≥ 0, m = 1, . . . ,M,

λmgm(x∗) = 0, m = 1, . . . ,M,

∇f (x∗) +
M∑

m=1

λ∗m∇gm(x∗) = 0.

3This means they can be written as gm(x) = a
T
mx+ bm for some vector am

and scalar bm.

7

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



Example: The dual of a QP

We know that optimal soft margin is a quadratic program with linear
inequality constraints (QP). So for a quick example of how to derive
a dual function, let’s look at the general QP:

(QP) minimize
z∈RN

1

2
zTPz + cTz

subject to Az ≤ q.

Above,A is anM×N matrix, and q ∈ RM . The expressionAz ≤ q
is a compact way to write the M affine inequality constraints

gm(z) = aT
mz − qm ≤ 0,

where aT
m is mth row of A, and qm is the mth entry in q. For (QP)

to be convex, the N × N matrix P needs to be symmetric postive
semidefinite (i.e. all of its eigenvalues are ≥ 0). In this example,
we will also assume P is invertible — the discussion below can be
extended to the general case, but this assumption just makes the
derivation cleaner.

The Lagrangian is

L(z,λ) =
1

2
zTPz + cTz +

M∑
m=1

λm(aT
mz − qm).

Notice that we can write the last term above more compactly as

M∑
m=1

λm(aT
mz − qm) = λT(Az − q).

This is a convex quadratic function, so finding its unconstrained min-
imum amounts to finding a point where the gradient is equal to zero.

8

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



Since
∇zL(z,λ) = Pz + c +ATλ,

we know that minz L(z,λ) will be achieved when

Pz + c +ATλ = 0 ⇒ z = −P −1(c +ATλ).

Thus the dual function is

d(λ) =
1

2
(c +ATλ)TP −1(c +ATλ)− cTP −1(c +ATλ)

+ λT(−AP −1(c +ATλ)− q)

= −1

2
(c +ATλ)TP −1(c +ATλ)− qTλ,

and the dual optimization program is

(DQP) maximize
λ∈RM

−1

2
(c +ATλ)TP −1(c +ATλ)− qTλ

subject to λ ≥ 0.

This is also a (concave) quadratic program with linear inequality
constraints.

9

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



The dual of optimal soft margin

Now let’s derive the dual of the optimal soft margin program

(SM) minimize
b,w,ξ

1

2
‖w‖22 +

C

n

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n.

ξi ≥ 0, i = 1, . . . , n.

We could put this in the form of a QP and use our result above,
but it is just as easy (and more enlightening) to compute the dual
directly. We will use two sets of Lagrange multiplies, α,β ∈ Rn for
the two sets of linear inequality constraints above. The Lagrangian
is

L =
1

2
‖w‖22 +

C

n

n∑
i=1

ξi +
n∑

i=1

αi(1− ξi − yiwTxi − yib)−
n∑

i=1

βiξi.

This function is smooth in all of its variables (b,w, ξ,α,β); it will
be minimized in the primal variables b,w, ξ when4

∇bL = −
n∑

i=1

αiyi = 0,

∇wL = w −
n∑

i=1

αiyixi = 0,

∇ξL =
C

n
1−α− β = 0.

The last relation above means we can eliminate the second set of
lagrange multipliers by substituting βi = C/n− αi. Plugging these

4In this expression, 1 is a vector with every entry equal to 1.

10

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



relations in the Lagrangian gives us the dual function

d(α) =
1

2

∥∥∥∥∥
n∑

i=1

αiyixi

∥∥∥∥∥
2

2

+
n∑

i=1

αi −
n∑

i=1

αiyi

(
n∑

j=1

αjyjxj

)T

xi

= −1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi,

where this simplification implicitly incorporates the constraint that
−
∑n

i=1 αiyi = 0.

Finally, this gives us the dual program

(DSM) maximize
α∈Rn

− 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi

subject to
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C/n, i = 1, . . . , n.

11

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



Support vectors

From the complementary slackness conditions (λmgm(x∗) = 0), we
know that

α∗i
(
1− ξ∗i − yi(w∗Txi + b∗)

)
= 0, i = 1, . . . , n.

Thus5

α∗i > 0 ⇔ w∗Txi + b∗ = yi(1− ξ∗i ).

This means the i for which αi > 0 correspond to data point xi that
are on or inside the margin of separation.

These are called the support vectors, and in practice, there tend
to be a small number of them. One consequence for this is that the
weights can be calculated from just this small portion of the data.
Recall that we derived the following expression:

w∗ =
n∑

i=1

α∗iyixi =
∑
i∈SV

α∗iyixi, where SV = set of support vectors

5Note that since yi ∈ {−1,+1}, y−1
i = yi.

12

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017



If the set of support vectors is small, then computing w∗ is can be
very inexpensive.

The other thing that the complementary slackness conditions tell us
is that (

C

n
− α∗i

)
ξ∗i = 0 for all i = 1, . . . , n.

This means that α∗i < C/n ⇒ ξ∗i = 0. Combining this with the
condition above means that

0 < α∗i < C/n ⇒ b∗ = yi −w∗Txi.

This gives us the relation that allows us to recover the affine offset
from the dual solution.

13

Georgia Tech ECE 6254 Spring 2017; Notes by M. A. Davenport and J. Romberg. Last updated 21:27, February 6, 2017


