
Constrained optimization

A general constrained optimization problem has the form

where             

The Lagrangian function is given by

Primal and dual optimization problems

Primal:

Dual:

Weak duality:

Strong duality:  For convex problems with affine constraints

Saddle point property

If                    are primal/dual optimal with zero duality gap, 
they are a saddle point of                 , i.e.,   

for all            ,              ,

KKT conditions: The bottom line

If a constrained optimization problem is

• differentiable

• convex

then the KKT conditions are necessary and sufficient for 
primal/dual optimality (with zero duality gap)

In this case, we can use the KKT conditions to find a solution 
to our optimization problem

i.e., if we find                    satisfying the conditions, we have 
found solutions to both the primal and dual problems



The KKT conditions

1.

2.

3.

4.

5.

(complementary slackness) 

Soft-margin classifier

This optimization problem is differentiable and convex

• the KKT conditions and necessary and sufficient conditions 
for primal/dual optimality (with zero duality gap)

• we can use these conditions to find a relationship between 
the solutions of the primal and dual problems

• the dual optimization problem will be easy to “kernelize”

Forming the Lagrangian

Begin by converting our problem to the standard form

Forming the Lagrangian

The Lagrangian function is then given by

Lagrange multipliers/dual variables



Soft-margin dual

The Lagrangian dual is thus

and the dual optimization problem is

Let’s compute a simplified expression for

How?
Using the KKT conditions!

Taking the gradient

Plugging this in

The dual function is thus

And the dual optimization problem can be written as

Soft-margin dual quadratic program

We can eliminate    to obtain

Note: Input patterns are only involved via inner products



Recovering   a

Given      (the solution to the soft-margin dual), can we 
recover the optimal       and     ?

Yes!  Use the KKT conditions

From KKT condition 1, we know that

And thus the optimal normal vector is just a linear 
combination of our input patterns

is a little less obvious – we’ll return to this in a minute

Support vectors

From KKT condition 5 (complementary slackness) we also 
have that for all   ,

The      for which                                           are called 
support vectors

These are the points on or 
inside the margin of separation

Useful fact:
By the KKT conditions,              
if and only if      is a support vector!

Empirical fact

It has been widely demonstrated (empirically) that in typical 
learning problems, only a small fraction of the training input 
patterns are support vectors

Thus, support vector machines produce a hyperplane with a 
sparse representation

This is advantageous for efficient storage and evaluation

What about    ?

Another consequence of the KKT conditions (condition 5) is 
that for all   ,

Since                       , this implies that if             , then 

Recall that if             we also have that     is a support vector, 
and hence

How can we combine these two facts to determine     ?



Recovering a

For any    such that                     , we have

In practice, it is common to average over several such     to 
counter numerical imprecision

Support vector machines

Given an inner product kernel   , we can write the SVM 
classifier as 

where      is the solution of

and                                               for some    s.t.

Remarks

• The final classifier depends only on the     with            , 
i.e., the support vectors

• The size (number of variables) of the dual QP is    , 
independent of the kernel   , the mapping    , or the space
– remarkable, since the dimension of     can be infinite

• The soft-margin hyperplane was the first machine learning 
algorithm to be “kernelized”, but since then the idea has 
been applied to many, many other algorithms 
– kernel ridge regression

– kernel PCA

– … 

Solving the quadratic program

How can we actually compute the solution to

where                                 ?

There are several general approaches to soling quadratic 
programs, and many can be applied to solve the SVM dual

We will focus on a particular example that is very efficient 
and capitalizes on some of the unique structure in the SVM 
dual, called sequential minimal optimization (SMO)



Sequential minimal optimization

SMO is an example of a decomposition algorithm

Sequential minimal optimization

Initialize:

Repeat until stopping criteria satisfied

(1) Select a pair  
(2) Update      and by optimizing the dual QP, 

holding all other                      fixed

The reason for decomposing this to a two-variable subproblem
is that this subproblem can be solved exactly via a simple 
analytic update

The update step

Choose      and      to solve

where                                       and similarly for

SMO in practice

• Several strategies have been proposed for selecting
at each iteration

• Typically based on heuristics (often using the KKT 
conditions) that predict which pair of variables will lead to 
the largest change in the objective function

• For many of these heuristics, the SMO algorithm is proven 
to converge to the global optimum after finitely many 
iterations 

• The running time is              in the worst case, but tends to 
be more like             in practice

Alternative algorithms

SMO is one of the predominant strategies for training an SVM, 
but there are important alternatives to consider on very large 
datasets

– modern variants for solving the dual based on stochastic 
gradient descent 
§ closely related to SMO

– directly optimizing the primal
§ makes most sense when the dimension of the feature space is 

small compared to the size of the dataset
§ some algorithms very similar to PLA and stochastic gradient 

descent version of logistic regression


