Linear classifiers

« LDA

« Logistic regression

e PLA

e Maximum margin hyperplanes
e SVMs

Fundamental tradeoff

By mapping our data to a higher-dimensional space, the set of
linear classifiers becomes a “richer” set
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This data set is not linearly
separable
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The dataset is linearly separable after applying this feature

map: w = [—1,0,0,0,1,1]"

Measuring “richness”

Today we will turn back to the question of when we can have
confidence that R,(h*) =~ R(h*), but where h*is chosen

from an infinite set H

To keep life (much) simpler, we will restrict our attention to
binary classification, but an analogous theory can be
developed for other supervised learning problems

« For a single hypothesis, we have
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« For m = |H| hypotheses, and h* € H , we have
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Where did m come from? Can we improve on m?

P Hfin(h*) — R(KY) Yes. There is tremendous overlap between our “bad events
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If not m, what? Hypotheses vs dichotomies
Instead of considering all possible hypotheses in Hypotheses
we will consider a finite set of input points X1, ...,Xy e h: X —{-1,41}
and “combine” hypotheses that result in the same labeling « Number of hypotheses |#| can be infinite
We will call a particular labeling of x1, ..., X, a dichotomy ) )
|’H| (orm) is a poor way to measure “richness” of H
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The growth function

A dichotomy is defined in terms of a particular xi,...,x,

We would like to be able to state results that hold no matter
what x1, ..., X, turn out to be

Define the growth function of H as

my(n) ;== max |H(x1,...,Xy)]

my,(n) counts the most dichotomies that can possibly be
generated on n points

It is easy to see that my(n) < 2", but it can potentially be
much smaller

Example 2: Positive intervals

Candidate functions: h : R — {—1, 41} such that

hz) = +1 for:ce.[a,b]
—1 otherwise
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Example 1: Positive rays

Candidate functions: h : R — {—1, 41} such that
h(z) = sign(xz — a) forsomea € R
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muy(n) =n+1

Example 3: Convex sets

Candidate functions: h : R® — {—1,+1} such that
{x : h(x) = +1} is convex



Example 3: Convex sets

Candidate functions: h : R® — {—1,+1} such that
{x : h(x) = +1}is convex
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Example 4: Linear classifiers

Candidate functions: h : R® — {—1,+1} such that
h(x) = sign(wlx 4+ b) for some
weER? and b e R

Example 3: Convex sets

Candidate functions: h : R® — {—1,+1} such that
{x : h(x) = +1} is convex
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If H can generate all
possible dichotomies on
X1,...,Xn, then we
say that H shatters
_|_]_ X1y...,Xn
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Example 4: Linear classifiers

Candidate functions: h : R® — {—1,+1} such that
h(x) = sign(wlx 4+ b) for some
weER? and b e R
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Recap: Example growth functions

Positive rays: my(n) =n + 1

Positive intervals: my(n) = %nz + %n +1

Convex sets: my(n) = 2"

« Linear classifiers in R?: my (1) = 2

my(2) = 4
mH(3) =8
mH(4) =14
my(n) =7

What if... ?

What if we can replace m with my(n)?

In particular, suppose that for any § € (0, 1), we can
guarantee that with probability at least 1 — §

R(R*) < Ru(h?) + 1/ 2 log 2242)

o Ifmy(n) =2", \/% log 2m+(”) is a constant

o If my(n) is a polynomial in n, \/% log 2m+(”) decays

like /o9
n

Back to the big picture

Recall R
P [|Ru(r) = R(E)

> e] < 2me 2

Another way to express this is that if you pick a §, then we
can guarantee that with probability at least 1 — §

R(h*) < Ra(h*) + /5 log 22

2¢?

(Just set 2me “¢"™ = § and solve for ¢)

If m o e", we have a problem...

No matter how big n gets, 4 /% log QTm will never get any

smaller...

When is learning possible?

Assuming that we will indeed be allowed to substitute my(n)
form, we can argue that for a given set of hypotheses H ,
learning is possible provided that my (n) is a polynomial

Key idea: Break points

If no data set of size k can be shattered by H, then k is a
break point for H

my (k) < 2k

If k& is a break point, then sois any &’ > k



Examples

Positive rays: my(n) =n + 1
- break point: k = 2 [} e

Positive intervals: my (n) = 2n? + In+ 1
- break point: £k = 3 () 6} e

Convex sets: my(n) = 2"
- break point: £k = o

Linear classifiers in R2: my(3) = 8
m;u.[(4) =14
- break point: £k = 4

How many dichotomies?

You are given a hypothesis set which has a break point of 2

How many dichotomies can you get on 3 data points?
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So what?

If there exists any break point,
thenmy(n) is polynomial in n

Also, if there are no break points, then my(n) = 2"

As soon as we have a single break point, this starts
eliminating tons of dichotomies

Bounding the growth function
We want to show that my(n) is polynomial in n
We will show that my(n) < some polynomial

Our approach will center around
maximum number of dichotomies on
B(n, k) := n points such that no subset of size k
can be shattered by these dichotomies

B(n, k) is a purely combinatorial quantity

By definition, my(n) < B(n, k)



Sauer’s Lemma

Theorem |If kis a break point, then

k-1

mu(m) < Bn,k) <Y (")
i=0

In fact, it is actually true that
k—1

s =35 ()

1=

but all we really need is the upper bound

Bottom line

For a given H, all we need is for a break point to exist

() <Y (")
1=0
k-1

polynomial with dominant termn™

All that remains is to argue that we can actually replace |H|
with m#(n) to obtain an inequality along the lines of

R(h*) < Ra(h*) + 1/ 2 log 2o

Examples

k-1
mu(m) <> (")
1=0

« Positive rays: Break point of k = 2
muy(n)=n+1<n+1
« Positive intervals: Break point of £k = 3
my(n) = %nQ—l—%n—l— 1< %nQ—l—%n—I— 1
« Linear classifiers in R?: Break point of k = 4

my(n) = 7 g%n3—|—%n—|—1



