Linear classifiers

- LDA
- Logistic regression
- PLA
- Maximum margin hyperplanes
- SVMs

Linear classifiers?

The dataset is linearly separable after applying this feature map: $\mathbf{w} = [-1, 0, 0, 0, 1, 1]^T$

Fundamental tradeoff

By mapping our data to a higher-dimensional space, the set of linear classifiers becomes a "richer" set

Measuring "richness"

Today we will turn back to the question of when we can have confidence that $\widehat{R}_n(h^*) \approx R(h^*)$, but where h^* is chosen from an *infinite* set \mathcal{H}

To keep life (much) simpler, we will restrict our attention to binary classification, but an analogous theory can be developed for other supervised learning problems

• For a single hypothesis, we have

$$\mathbb{P}\left[\left|\widehat{R}_n(h) - R(h)\right| > \epsilon
ight] \le 2e^{-2\epsilon^2 n}$$

• For $m = |\mathcal{H}|$ hypotheses, and $h^* \in \mathcal{H}$, we have $\mathbb{P}\left[\left|\widehat{R}_n(h^*) - R(h^*)\right| > \epsilon\right] \leq 2me^{-2\epsilon^2 n}$

Where did $m \operatorname{come}$ from?

If not m, what?

Instead of considering all possible hypotheses in \mathcal{H} we will consider a finite set of input points $\mathbf{x}_1, \ldots, \mathbf{x}_n$ and "combine" hypotheses that result in the same labeling

We will call a particular labeling of $\mathbf{x}_1, \ldots, \mathbf{x}_n$ a *dichotomy*

Can we improve on m?

Yes. There is tremendous overlap between our "bad events"

$$R(h_1) \approx R(h_2)$$

 $\widehat{R}_n(h_1) \approx \widehat{R}_n(h_2)$

$$|\widehat{R}_n(h_1) - R(h_1)| \approx |\widehat{R}_n(h_2) - R(h_2)|$$

Hypotheses vs dichotomies

Hypotheses

- $h: \mathcal{X} \rightarrow \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite
- $|\mathcal{H}|$ (or m) is a poor way to measure "richness" of \mathcal{H}

Dichotomies

- $h: {\mathbf{x}_1, \dots, \mathbf{x}_n} \to {\{-1, +1\}}$
- Number of dichotomies $|\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_n)|$ is at most 2^n

Good candidate for replacing $|\mathcal{H}|$ as a measure of "richness"

The growth function

A dichotomy is defined in terms of a particular $\mathbf{x}_1, \ldots, \mathbf{x}_n$

We would like to be able to state results that hold no matter what x_1, \ldots, x_n turn out to be

Define the *growth function* of \mathcal{H} as

$$m_{\mathcal{H}}(n) := \max_{\mathbf{x}_1,...,\mathbf{x}_n \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_n)|$$

 $m_{\mathcal{H}}(n)$ counts the **most** dichotomies that can possibly be generated on n points

It is easy to see that $m_{\mathcal{H}}(n) \leq 2^n$, but it can potentially be much smaller

Example 1: Positive rays

Candidate functions: $h : \mathbb{R} \to \{-1, +1\}$ such that $h(x) = \operatorname{sign}(x - a)$ for some $a \in \mathbb{R}$

Example 2: Positive intervals

Candidate functions: $h : \mathbb{R} \to \{-1, +1\}$ such that $h(x) = \begin{cases} +1 & \text{for } x \in [a, b] \\ -1 & \text{otherwise} \end{cases}$

Example 3: Convex sets

Candidate functions: $h : \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x} : h(\mathbf{x}) = +1\}$ is convex

Example 3: Convex sets

Candidate functions: $h : \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x} : h(\mathbf{x}) = +1\}$ is convex

Example 3: Convex sets

Candidate functions: $h : \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x} : h(\mathbf{x}) = +1\}$ is convex

If \mathcal{H} can generate all possible dichotomies on $\mathbf{x}_1, \ldots, \mathbf{x}_n$, then we say that \mathcal{H} shatters $\mathbf{x}_1, \ldots, \mathbf{x}_n$

$m_{\mathcal{H}}(n) = 2^n$

Example 4: Linear classifiers

Candidate functions: $h : \mathbb{R}^2 \to \{-1, +1\}$ such that $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ for some $\mathbf{w} \in \mathbb{R}^2$ and $b \in \mathbb{R}$

 $m_{\mathcal{H}}(3) = 2^3$

Example 4: Linear classifiers

Candidate functions: $h : \mathbb{R}^2 \to \{-1, +1\}$ such that $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ for some $\mathbf{w} \in \mathbb{R}^2$ and $b \in \mathbb{R}$

Recap: Example growth functions

- Positive rays: $m_{\mathcal{H}}(n) = n + 1$
- Positive intervals: $m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1$
- Convex sets: $m_{\mathcal{H}}(n) = 2^n$

• Linear classifiers in
$$\mathbb{R}^2$$
: $m_{\mathcal{H}}(1) = 2$
 $m_{\mathcal{H}}(2) = 4$
 $m_{\mathcal{H}}(3) = 8$
 $m_{\mathcal{H}}(4) = 14$
 $m_{\mathcal{H}}(n) = ?$

What if...?

What if we can replace m with $m_{\mathcal{H}}(n)$?

In particular, suppose that for any $\delta \in (0,1)$, we can guarantee that with probability at least $1-\delta$

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n}\log \frac{2m_{\mathcal{H}}(n)}{\delta}}$$

• If
$$m_{\mathcal{H}}(n)=2^n$$
 , $\sqrt{rac{1}{2n}\lograc{2m_{\mathcal{H}}(n)}{\delta}}$ is a constant

- If
$$m_{\mathcal{H}}(n)$$
 is a polynomial in n , $\sqrt{\frac{1}{2n}\log\frac{2m_{\mathcal{H}}(n)}{\delta}}$ decays like $\sqrt{\frac{\log n}{n}}$

Back to the big picture

Recall

$$\mathbb{P}\left[\left|\widehat{R}_n(h^*) - R(h^*)\right| > \epsilon
ight] \leq 2me^{-2\epsilon^2 n}$$

Another way to express this is that if you pick a $\,\delta$, then we can guarantee that with probability at least $1-\delta$

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n}\log \frac{2m}{\delta}}$$

(Just set $2me^{-2\epsilon^2 n} = \delta$ and solve for ϵ)

If $m\propto e^n$, we have a problem... No matter how big n gets, $\sqrt{\frac{1}{2n}\log\frac{2m}{\delta}}$ will never get any smaller...

When is learning possible?

Assuming that we will indeed be allowed to substitute $m_{\mathcal{H}}(n)$ for m, we can argue that for a given set of hypotheses \mathcal{H} , learning is possible provided that $m_{\mathcal{H}}(n)$ is a polynomial

Key idea: Break points

If no data set of size k can be shattered by $\mathcal H$, then k is a break point for $\ \mathcal H$

 $m_{\mathcal{H}}(k) < 2^k$

If k is a break point, then so is any k' > k

Examples

So what?

- Positive rays: $m_{\mathcal{H}}(n) = n + 1$ - break point: k = 2
- Positive intervals: $m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1$ - break point: k = 3
- Convex sets: $m_{\mathcal{H}}(n) = 2^n$ - break point: $k = \infty$
- Linear classifiers in \mathbb{R}^2 : $m_{\mathcal{H}}(3) = 8$ $m_{\mathcal{H}}(4) = 14$ - break point: k = 4

If there exists any break point, then $m_{\mathcal{H}}(n)$ is polynomial in n

Also, if there are no break points, then $m_{\mathcal{H}}(n) = 2^n$

As soon as we have *a single break point*, this starts eliminating tons of dichotomies

How many dichotomies?

You are given a hypothesis set which has a break point of 2 How many dichotomies can you get on 3 data points?

Bounding the growth function

We want to show that $m_{\mathcal{H}}(n)$ is polynomial in n

We will show that $m_{\mathcal{H}}(n) \leq \textit{some}$ polynomial

Our approach will center around

 $B(n,k) := \begin{array}{l} \max \text{imum number of dichotomies on} \\ n \text{ points such that no subset of size } k \\ \text{can be shattered by these dichotomies} \end{array}$

B(n,k) is a purely combinatorial quantity

By definition, $m_{\mathcal{H}}(n) \leq B(n,k)$

Sauer's Lemma

Theorem If k is a break point, then

$$m_{\mathcal{H}}(n) \le B(n,k) \le \sum_{i=0}^{k-1} \binom{n}{i}$$

In fact, it is actually true that

$$B(n,k) = \sum_{i=0}^{k-1} \binom{n}{i}$$

but all we really need is the upper bound

Bottom line

For a given \mathcal{H} , all we need is for a break point to exist

$$m_{\mathcal{H}}(n) \leq \sum_{i=0}^{k-1} \binom{n}{i}$$
 polynomial with dominant term n^{k-1}

All that remains is to argue that we can actually replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(n)$ to obtain an inequality along the lines of

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n} \log \frac{2m_{\mathcal{H}}(n)}{\delta}}$$

Examples

$$m_{\mathcal{H}}(n) \leq \sum_{i=0}^{k-1} \binom{n}{i}$$

• Positive rays: Break point of k = 2

$$m_{\mathcal{H}}(n) = n+1 \le n+1$$

• Positive intervals: Break point of k=3

$$m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1 \le \frac{1}{2}n^2 + \frac{1}{2}n + 1$$

• Linear classifiers in \mathbb{R}^2 : Break point of k=4 $m_{\mathcal{H}}(n)=~?\leq \frac{1}{6}n^3+\frac{5}{6}n+1$