
Linear classifiers

• LDA

• Logistic regression

• PLA

• Maximum margin hyperplanes

• SVMs

Linear classifiers?

This data set is not linearly 
separable

Consider the mapping

The dataset is linearly separable after applying this feature 
map:  

Fundamental tradeoff

By mapping our data to a higher-dimensional space, the set of 
linear classifiers becomes a “richer” set

Richer set of hypotheses 

“Richness” of hypothesis set

Error

Bayes risk

Measuring “richness”

Today we will turn back to the question of when we can have 
confidence that                             , but where     is chosen 
from an infinite set  

To keep life (much) simpler, we will restrict our attention to 
binary classification, but an analogous theory can be 
developed for other supervised learning problems

• For a single hypothesis, we have

• For                hypotheses, and             , we have



Where did     come from? Can we improve on     ?

Yes. There is tremendous overlap between our “bad events”

If not     , what?

Instead of considering all possible hypotheses in     

we will consider a finite set of input points 

and “combine” hypotheses that result in the same labeling 

We will call a particular labeling of                   a dichotomy

Hypotheses vs dichotomies

Hypotheses 
•
• Number of hypotheses       can be infinite

(or    ) is a poor way to measure “richness” of  

Dichotomies
•
• Number of dichotomies                            is at most

Good candidate for replacing        as a measure of “richness” 



The growth function

A dichotomy is defined in terms of a particular

We would like to be able to state results that hold no matter 
what                   turn out to be 

Define the growth function of      as 

counts the most dichotomies that can possibly be 
generated on     points

It is easy to see that                      , but it can potentially be 
much smaller

Example 1: Positive rays

Candidate functions:                                  such that

for some

Example 2: Positive intervals

Candidate functions:                                  such that

Example 3: Convex sets

Candidate functions:                                    such that

is convex



Example 3: Convex sets

Candidate functions:                                    such that

is convex

Example 3: Convex sets

Candidate functions:                                    such that

is convex

If      can generate all
possible dichotomies on

, then we
say that      shatters 

Example 4: Linear classifiers

Candidate functions:                                    such that 

for some

and

Example 4: Linear classifiers

Candidate functions:                                    such that 

for some

and



Recap: Example growth functions

• Positive rays:

• Positive intervals:

• Convex sets:

• Linear classifiers in     :

Recall

Another way to express this is that if you pick a    , then we 
can guarantee that with probability at least

(Just set                          and solve for   )

If             , we have a problem…

No matter how big     gets,                      will never get any 
smaller… 

Back to the big picture

WWhat if we can replace      with             ?

In particular, suppose that for any                 , we can 
guarantee that with probability at least

• If                       ,                           is a constant

• If              is a polynomial in    ,                            decays 

like

What if… ?

Assuming that we will indeed be allowed to substitute 
for    , we can argue that for a given set of hypotheses     , 
learning is possible provided that             is a polynomial

Key idea: Break points

If no data set of size    can be shattered by    , then    is a 
break point for    

If    is a break point, then so is any 

When is learning possible?



Examples

• Positive rays:
– break point:

• Positive intervals:
– break point:

• Convex sets:
– break point:

• Linear classifiers in     :

– break point: 

Also, if there are no break points, then

As soon as we have a single break point, this starts 
eliminating tons of dichotomies

If there exists any break point,
then             is polynomial in   

So what?

How many dichotomies?

You are given a hypothesis set which has a break point of 2

How many dichotomies can you get on 3 data points?

Bounding the growth function

We want to show that              is polynomial in

We will show that                   some polynomial

Our approach will center around

is a purely combinatorial quantity

By definition, 

maximum number of dichotomies on
points such that no subset of size   

can be shattered by these dichotomies



Sauer’s Lemma

Theorem If    is a break point, then

In fact, it is actually true that                                

but all we really need is the upper bound

Examples

• Positive rays: Break point of

• Positive intervals: Break point of

• Linear classifiers in     : Break point of

Bottom line

For a given    , all we need is for a break point to exist

All that remains is to argue that we can actually replace     
with              to obtain an inequality along the lines of

polynomial with dominant term    


