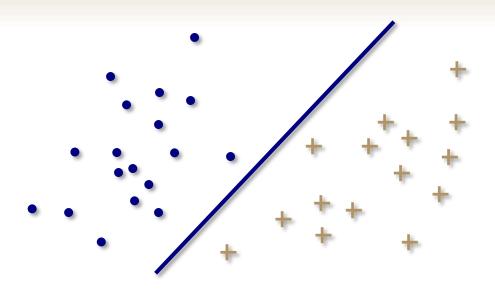
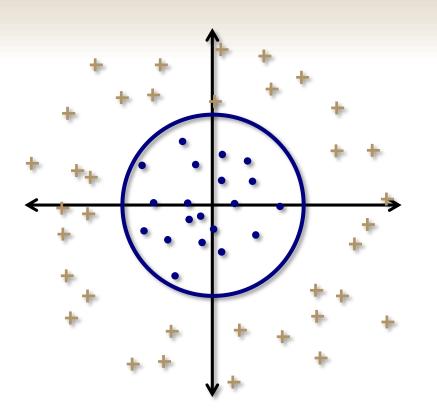
Linear classifiers



- LDA
- Logistic regression
- PLA
- Maximum margin hyperplanes
- SVMs

Linear classifiers?



This data set is not linearly separable

Consider the mapping

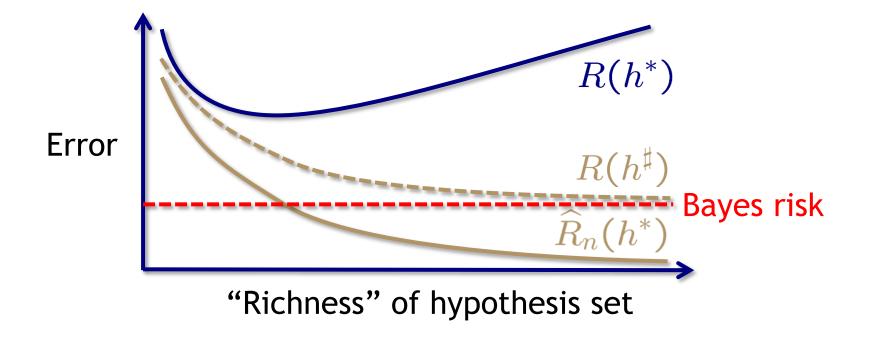
$$\Phi(\mathbf{x}) = \begin{bmatrix} 1 \\ x(1) \\ x(2) \\ x(1)x(2) \\ x(1)^2 \\ x(2)^2 \end{bmatrix}$$

The dataset *is* linearly separable after applying this feature map: $\mathbf{w} = [-1,0,0,0,1,1]^T$

Fundamental tradeoff

By mapping our data to a higher-dimensional space, the set of linear classifiers becomes a "richer" set

Richer set of hypotheses \longrightarrow $\left\{ \begin{array}{c} \widehat{R}_n(h^*) \downarrow & R(h^\sharp) \downarrow \\ \widehat{R}_n(h^*) - R(h^*) \uparrow \end{array} \right.$



Measuring "richness"

Today we will turn back to the question of when we can have confidence that $\widehat{R}_n(h^*) \approx R(h^*)$, but where h^* is chosen from an *infinite* set \mathcal{H}

To keep life (much) simpler, we will restrict our attention to binary classification, but an analogous theory can be developed for other supervised learning problems

For a single hypothesis, we have

$$\mathbb{P}\left[\left|\widehat{R}_n(h) - R(h)\right| > \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

• For $m=|\mathcal{H}|$ hypotheses, and $h^*\in\mathcal{H}$, we have

$$\mathbb{P}\left[\left|\widehat{R}_n(h^*) - R(h^*)\right| > \epsilon\right] \leq 2me^{-2\epsilon^2 n}$$

Where did m come from?

$$\mathbb{P}\left[\left|\widehat{R}_n(h^*) - R(h^*)\right| > \epsilon\right] \leq \mathbb{P}\left[\max_{h_j \in \mathcal{H}} \left|\widehat{R}_n(h_j) - R(h_j)\right| \geq \epsilon\right]$$

$$\leq \sum_{j=1}^{m} \mathbb{P}\left[\left|\widehat{R}_{n}(h_{j}) - R(h_{j})\right| \geq \epsilon\right]$$

$$\mathcal{E}_{1}$$

$$\mathcal{E}_{2}$$

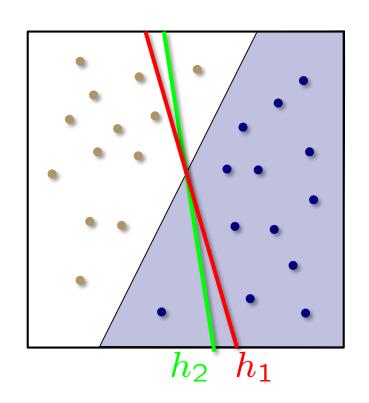
$$\mathcal{E}_{3}$$

Can we improve on m?

Yes. There is tremendous overlap between our "bad events"

$$R(h_1) \approx R(h_2)$$

$$\widehat{R}_n(h_1) \approx \widehat{R}_n(h_2)$$

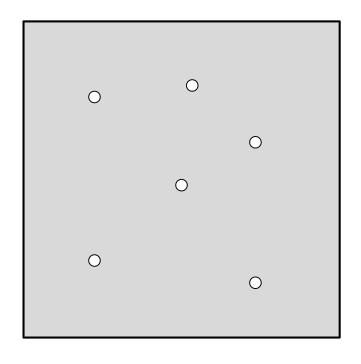


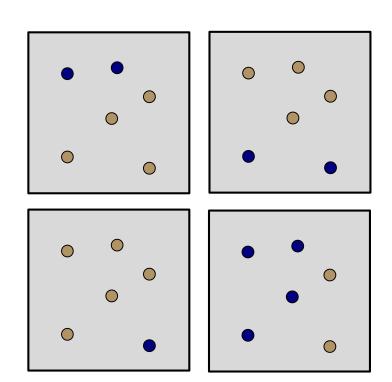
$$|\widehat{R}_n(h_1) - R(h_1)| \approx |\widehat{R}_n(h_2) - R(h_2)|$$

If not m, what?

Instead of considering all possible hypotheses in \mathcal{H} we will consider a finite set of input points $\mathbf{x}_1, \dots, \mathbf{x}_n$ and "combine" hypotheses that result in the same labeling

We will call a particular labeling of x_1, \ldots, x_n a *dichotomy*





Hypotheses vs dichotomies

Hypotheses

- $h: \mathcal{X} \to \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite

 $|\mathcal{H}|$ (or m) is a poor way to measure "richness" of \mathcal{H}

Dichotomies

- $h: \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \to \{-1, +1\}$
- Number of dichotomies $|\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_n)|$ is at most 2^n

Good candidate for replacing $|\mathcal{H}|$ as a measure of "richness"

The growth function

A dichotomy is defined in terms of a particular x_1, \ldots, x_n

We would like to be able to state results that hold no matter what x_1, \ldots, x_n turn out to be

Define the **growth function** of ${\mathcal H}$ as

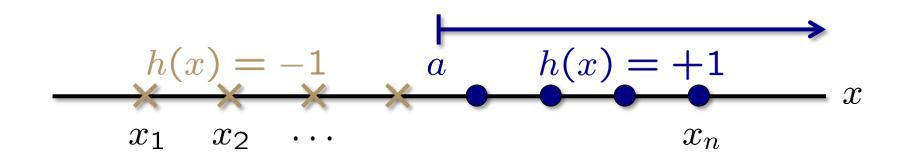
$$m_{\mathcal{H}}(n) := \max_{\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_n)|$$

 $m_{\mathcal{H}}(n)$ counts the \emph{most} dichotomies that can possibly be generated on n points

It is easy to see that $m_{\mathcal{H}}(n) \leq 2^n$, but it can potentially be much smaller

Example 1: Positive rays

Candidate functions: $h: \mathbb{R} \to \{-1, +1\}$ such that $h(x) = \mathrm{sign}(x-a)$ for some $a \in \mathbb{R}$



$$m_{\mathcal{H}}(n) = n + 1$$

Example 2: Positive intervals

Candidate functions:
$$h:\mathbb{R} \to \{-1,+1\}$$
 such that
$$h(x) = \begin{cases} +1 & \text{for } x \in [a,b] \\ -1 & \text{otherwise} \end{cases}$$

$$h(x) = -1$$

$$x_1 \quad x_2 \quad \cdots$$

$$h(x) = +1$$

$$x_n \quad h(x) = -1$$

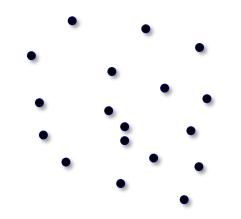
$$x_n \quad x_n$$

$$m_{\mathcal{H}}(n) = {n+1 \choose 2} + 1$$

= $\frac{1}{2}n^2 + \frac{1}{2}n + 1$

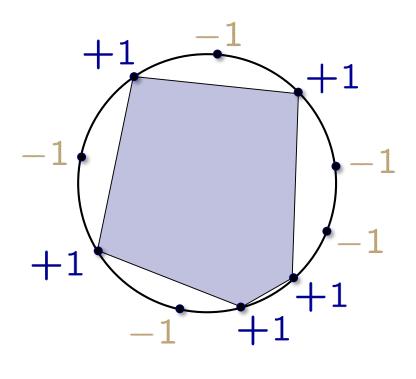
Example 3: Convex sets

Candidate functions: $h: \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x}: h(\mathbf{x}) = +1\}$ is convex



Example 3: Convex sets

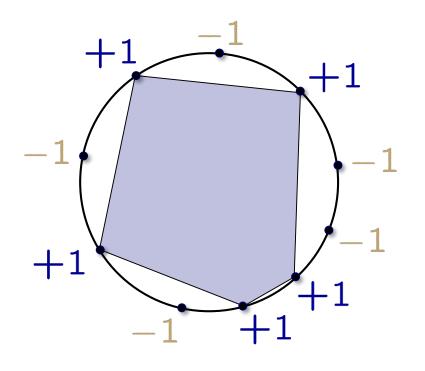
Candidate functions: $h: \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x}: h(\mathbf{x}) = +1\}$ is convex



$$m_{\mathcal{H}}(n) = 2^n$$

Example 3: Convex sets

Candidate functions: $h: \mathbb{R}^2 \to \{-1, +1\}$ such that $\{\mathbf{x}: h(\mathbf{x}) = +1\}$ is convex

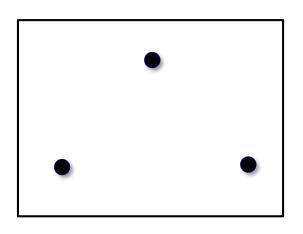


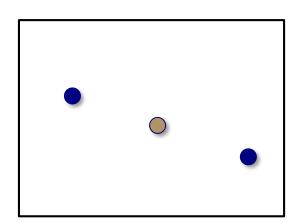
 $m_{\mathcal{H}}(n) = 2^n$

If \mathcal{H} can generate all possible dichotomies on $\mathbf{x}_1, \dots, \mathbf{x}_n$, then we say that \mathcal{H} shatters $\mathbf{x}_1, \dots, \mathbf{x}_n$

Example 4: Linear classifiers

Candidate functions: $h: \mathbb{R}^2 \to \{-1, +1\}$ such that $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x} + b)$ for some $\mathbf{w} \in \mathbb{R}^2$ and $b \in \mathbb{R}$

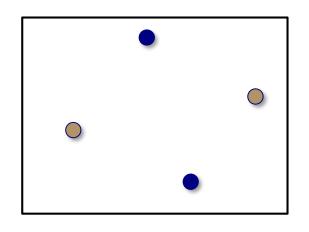


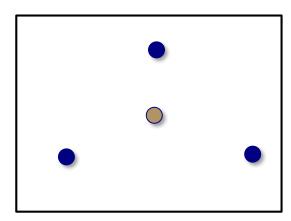


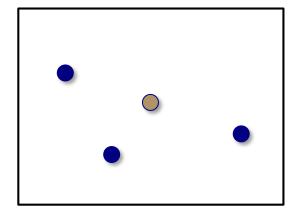
$$m_{\mathcal{H}}(3) = 2^3$$

Example 4: Linear classifiers

Candidate functions: $h: \mathbb{R}^2 \to \{-1, +1\}$ such that $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x} + b)$ for some $\mathbf{w} \in \mathbb{R}^2$ and $b \in \mathbb{R}$







$$m_{\mathcal{H}}(4) = 14$$

Recap: Example growth functions

- Positive rays: $m_{\mathcal{H}}(n) = n + 1$
- Positive intervals: $m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1$
- Convex sets: $m_{\mathcal{H}}(n) = 2^n$
- Linear classifiers in \mathbb{R}^2 : $m_{\mathcal{H}}(1)=2$ $m_{\mathcal{H}}(2)=4$ $m_{\mathcal{H}}(3)=8$ $m_{\mathcal{H}}(4)=14$ $m_{\mathcal{H}}(n)=?$

Back to the big picture

Recall

$$\mathbb{P}\left[\left|\widehat{R}_n(h^*) - R(h^*)\right| > \epsilon\right] \leq 2me^{-2\epsilon^2 n}$$

Another way to express this is that if you pick a δ , then we can guarantee that with probability at least $1-\delta$

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n}\log\frac{2m}{\delta}}$$

(Just set $2me^{-2\epsilon^2n} = \delta$ and solve for ϵ)

If $m \propto e^n$, we have a problem...

No matter how big n gets, $\sqrt{\frac{1}{2n}}\log\frac{2m}{\delta}$ will never get any smaller...

What if...?

What if we can replace m with $m_{\mathcal{H}}(n)$?

In particular, suppose that for any $\delta \in (0,1)$, we can guarantee that with probability at least $1-\delta$

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n} \log \frac{2m_{\mathcal{H}}(n)}{\delta}}$$

- If $m_{\mathcal{H}}(n)=2^n$, $\sqrt{\frac{1}{2n}\log\frac{2m_{\mathcal{H}}(n)}{\delta}}$ is a constant
- If $m_{\mathcal{H}}(n)$ is a polynomial in n , $\sqrt{\frac{1}{2n}}\log\frac{2m_{\mathcal{H}}(n)}{\delta}$ decays like $\sqrt{\frac{\log n}{n}}$

When is learning possible?

Assuming that we will indeed be allowed to substitute $m_{\mathcal{H}}(n)$ for m, we can argue that for a given set of hypotheses \mathcal{H} , learning is possible provided that $m_{\mathcal{H}}(n)$ is a polynomial

Key idea: Break points

If no data set of size k can be shattered by \mathcal{H} , then k is a **break point** for \mathcal{H}

$$m_{\mathcal{H}}(k) < 2^k$$

If k is a break point, then so is any k' > k

Examples

- Positive rays: $m_{\mathcal{H}}(n) = n + 1$
 - break point: k = 2
- Positive intervals: $m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1$
 - break point: k = 3
- Convex sets: $m_{\mathcal{H}}(n) = 2^n$
 - break point: $k = \infty$
- Linear classifiers in \mathbb{R}^2 : $m_{\mathcal{H}}(3)=8$ $m_{\mathcal{H}}(4)=14$
 - break point: k=4

So what?

If there exists any break point, then $m_{\mathcal{H}}(n)$ is polynomial in n

Also, if there are no break points, then $m_{\mathcal{H}}(n) = 2^n$

As soon as we have *a single break point*, this starts eliminating tons of dichotomies

How many dichotomies?

You are given a hypothesis set which has a break point of 2 How many dichotomies can you get on 3 data points?

\mathbf{x}_1	\mathbf{x}_2	X 3
	•	•
•	0	
	•	
		-
	-	

Bounding the growth function

We want to show that $m_{\mathcal{H}}(n)$ is polynomial in n

We will show that $m_{\mathcal{H}}(n) \leq some$ polynomial

Our approach will center around

maximum number of dichotomies on
$$B(n,k) := n$$
 points such that no subset of size k can be shattered by these dichotomies

B(n,k) is a purely combinatorial quantity

By definition, $m_{\mathcal{H}}(n) \leq B(n,k)$

Sauer's Lemma

Theorem

$$m_{\mathcal{H}}(n) \leq B(n,k) \leq \sum_{i=0}^{k-1} {n \choose i}$$

In fact, it is actually true that

$$B(n,k) = \sum_{i=0}^{k-1} \binom{n}{i}$$

but all we really need is the upper bound

Examples

$$m_{\mathcal{H}}(n) \leq \sum_{i=0}^{k-1} \binom{n}{i}$$

• Positive rays: Break point of k=2

$$m_{\mathcal{H}}(n) = n + 1 \le n + 1$$

• Positive intervals: Break point of k=3

$$m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1 \le \frac{1}{2}n^2 + \frac{1}{2}n + 1$$

• Linear classifiers in \mathbb{R}^2 : Break point of k=4

$$m_{\mathcal{H}}(n) = ? \leq \frac{1}{6}n^3 + \frac{5}{6}n + 1$$

Bottom line

For a given \mathcal{H} , all we need is for a break point to exist

$$m_{\mathcal{H}}(n) \le \sum_{i=0}^{k-1} \binom{n}{i}$$

polynomial with dominant term n^{k-1}

All that remains is to argue that we can actually replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(n)$ to obtain an inequality along the lines of

$$R(h^*) \leq \widehat{R}_n(h^*) + \sqrt{\frac{1}{2n}\log \frac{2m_{\mathcal{H}}(n)}{\delta}}$$