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Linear classifiers?

This data set is not linearly
separable

< / Consider the mapping
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P(x) = | 1 (1)2(2)
\ z(1)?
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The dataset is linearly separable after applying this feature
map:w = [—1,0,0,0,1, 1]T



Fundamental tradeoff

By mapping our data to a higher-dimensional space, the set of
linear classifiers becomes a “richer” set

R.(h*) 1  R(hY) |

Richer set of hypotheses wmp <|: R
Rn(h") — R(h7) 1
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“Richness” of hypothesis set



Measuring “richness”

Today we will turn back to the question of when we can have
confidence that R,(h*) ~ R(h"), but where h™is chosen
from an infinite set H

To keep life (much) simpler, we will restrict our attention to
binary classification, but an analogous theory can be
developed for other supervised learning problems

e For a single hypothesis, we have
P [ Ro(h) — R(h)‘ > e} < e

e For m = |H| hypotheses, and h™* € H , we have
P ‘]:?\,n(h*) — R(RY)| > e} < 2me 2"




Where did m come from?
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Can we improve on m ?

Yes. There is tremendous overlap between our “bad events”

|Rn(h1) — R(h1)| = |Rn(h2) — R(h2)]



If not ™, what?

Instead of considering all possible hypotheses in ‘H
we will consider a finite set of input points x1,...,Xp,
and “combine” hypotheses that result in the same labeling

We will call a particular labeling of x1, ..., X, a dichotomy
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Hypotheses vs dichotomies

Hypotheses
e h: X —»{-1,41}
« Number of hypotheses |7{| can be infinite

|H | (or m) is a poor way to measure “richness” of H

Dichotomies
e h:{x1,...,x,} —>{-1,+41}
« Number of dichotomies |H (X1, ...,Xy,)| is at most 2"

Good candidate for replacing || as a measure of “richness”



The growth function

A dichotomy is defined in terms of a particular x1,...,X,

We would like to be able to state results that hold no matter
what X1, ..., X, turn out to be

Define the growth function of H as

my(n) = max H(x1,...,Xn)]

X1y 3 XpE

my (n) counts the most dichotomies that can possibly be
generated on n points

It is easy to see that my(n) < 2", but it can potentially be
much smaller



Example 1: Positive rays

Candidate functions: h : R — {—1,+1} such that
h(x) = sign(x — a) forsomea € R
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a h(z) = +1
——0—0—0 x
r1 T2 - Tn

my(n) =n+1



Example 2: Positive intervals

Candidate functions: h : R — {—1,+1} such that
1 for b

—1 otherwise




Example 3: Convex sets

Candidate functions: h : R — {—1, 41} such that
{x : h(x) = +1} is convex




Example 3: Convex sets

Candidate functions: h : R — {—1, 41} such that
{x : h(x) = +1} is convex

+1 41

+1



Example 3: Convex sets

Candidate functions: h : R — {—1, 41} such that

{x:h(x)=

+1 41

+1
+1
+1

my(n) = 2"

1} is convex

If H{ can generate all
possible dichotomies on

X1,...,Xpn, then we
say that H shatters
X1y...9Xp



Example 4: Linear classifiers

Candidate functions: h : R — {—1, 41} such that
h(x) = sign(w!x -+ b) for some
w € R? and b € R




Example 4: Linear classifiers

Candidate functions: h : R — {—1, 41} such that

h(x) = sign(w!x -+ b) for some
wER? and b e R
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Recap: Example growth functions
Positive rays: my(n) = n+ 1
Positive intervals: my(n) = %nQ + %n +1

Convex sets: my(n) = 2"

Linear classifiers in R?: my (1) = 2

mH(Q) =4
my(3) = 8
mq.[(4) = 14



Back to the big picture

Recall
P HRn(h*) — R(h*)

> e} < Dme €T

Another way to express this is that if you pick a §, then we
can guarantee that with probability at least 1 — o

R(h*) < Ru(h*) + /2 10g 22

2€?

(Just set 2me <" = ¢ and solve for ¢)

If m oc e”, we have a problem...

No matter how big n gets, \/% log sz will never get any
smaller...



What if... ?

What if we can replace m with m«(n)?

In particular, suppose that for any § € (0, 1), we can
guarantee that with probability at least 1 — ¢

R(h*) < Ru(h*) + 1/ 2 log 22

o Ifmy(n) =2, \/% log ng(”) is a constant

e If my(n) is a polynomial in n, \/QL log 274 decays

n o)
like 4/129n



When is learning possible?

Assuming that we will indeed be allowed to substitute m (n)
for m, we can argue that for a given set of hypotheses H ,
learning is possible provided that m4(n) is a polynomial

Key idea: Break points

If no data set of size k can be shattered by H, then k is a
break point for ‘H

mq.[(k) < 2k

If k£ is a break point, then sois any k&’ > k



Examples

Positive rays: my(n) = n + 1
- break point: k = 2 O

Positive intervals: my(n) = %nQ -+ %n +1

- break point: k = 3 O

Convex sets: my(n) = 2"
- break point: £k = oo

Linear classifiers in R?: my(3) = 8
TT?/H(4) = 14
- break point: k = 4
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So what?

4 A

If there exists any break point,
thenmy (n) is polynomial in n

- /

Also, if there are no break points, then my(n) = 2"

As soon as we have a single break point, this starts
eliminating tons of dichotomies



How many dichotomies?

You are given a hypothesis set which has a break point of 2

How many dichotomies can you get on 3 data points?

X1 X2 X3
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Bounding the growth function

We want to show that my(n) is polynomial in n
We will show that m,(n) < some polynomial

Our approach will center around
maximum number of dichotomies on
B(n, k) := mn points such that no subset of size k
can be shattered by these dichotomies

B(n, k) is a purely combinatorial quantity

By definition, my(n) < B(n, k)



Sauer’s Lemma

Theorem

() < Bln, ) < 3 (")
1=0

In fact, it is actually true that
k—1

s =5 ()

1=0

but all we really need is the upper bound



Examples

k—1
mu(n) <Y (")
1=0

« Positive rays: Break point of £ = 2
my(n) =n—+1 <n+1
e Positive intervals: Break point of Kk = 3

m%(n):%nQ—l—%n—l—lg%nQ—l—%n—l—l

o Linear classifiers in R?: Break point of k = 4
my(n) = 7 < ln3_|_%n_|_ 1



Bottom line

For a given H, all we need is for a break point to exist

> (%)

k—1

polynomial with dominant termn”™

k—1

]

my(n) <

All that remains is to argue that we can actually replace |H|
with my,(n) to obtain an inequality along the lines of

R(h*) < Ru(h*) + /2 log 2220



