
Recap

For a single hypothesis, we have

For                hypotheses, and             , we have

or equivalently, that with probability at least 

Bound becomes meaningless when



Hoeffding’s inequality

space of all

possible

datasets

datasets for which

choose a fixed



Union bound intuition

Consider many different    at once



An alternative picture

If all the “bad” datasets overlap, maybe we can handle much 

bigger     than the union bound suggests



Big idea from last time

Rather than measuring the “size” of      with       , we can 

instead think about:

Using    , how many ways can we label a dataset?

We call a particular labeling of                   a dichotomy

Using this language, we can answer our question via the

growth function             , which counts the most dichotomies 

that could ever generate on     points

It is easy to see that

• If                       , we say that     can shatter a set of size

• If no set of size    can be shattered by     (                      )

then    is a break point



How many dichotomies?

You are given a hypothesis set which has a break point of 2

How many dichotomies can you get on 3 data points?



Bottom line

For a given    , all we need is for a break point to exist

All that remains is to argue that we can actually replace     

with              to obtain an inequality along the lines of

polynomial with dominant term    



VC generalization bound

We won’t be able to quite show

For technical reasons (which we will soon see), we will only 

be able to show that with probability 

This is called the VC generalization bound 

Named after Vapnik and Chervonenkis, who proved it in 1971 



Mathematical statement

Using Hoeffding’s inequality together with a union bound, we 

were able to show that

What the VC bound gives us is a generalization of the form

supremum: maximum over an infinite set



Supremum

The supremum of a set             is the least element of     that 

is greater than or equal to all elements of     

Sometimes called the least upper bound

Examples

–

–

–

–

The magic in the proof of the VC bound is to realize that we 

can relate the supremum over all to the maximum 

over a finite number of             using a really cool trick!



Role of the growth function

We aim to get a bound on                                         that 

holds for any            , i.e., a bound on

Perhaps it is not surprising that we can understand

using the growth function… 

There may be infinitely many            , but      can only 

generate               unique dichotomies

Thus,            can only take at most              different values

Unfortunately,           can still take infinitely many different 

values, and so there are infinitely many   



The key insight (or trick) is to consider two datasets!

We will imagine that in addition to our training data, we have 

access to a second independent dataset (of size    ), which we 

call the ghost dataset

Can we relate                                          to something like

?

Fundamental insight

distribution of

training error



Using the ghost dataset

Suppose (for the moment) that the empirical estimates

and             are random variables that are drawn from 

a symmetric distribution with mean (and median)

Consider the following events:

– : the event that

– : the event that

Claim:

Thus



Using the ghost dataset

Unfortunately, the distribution of             and             is 

binomial (not symmetric) so this exact statement doesn’t hold 

in general, but the intuition is valid

Instead, we have the following bound:

Lemma 1 (Ghost dataset)



Bounding the worst-case deviation

Lemma 2 (Where the magic happens)

Let                                                  . Then

here, the dataset    is fixed

the probability is with respect

to a random partition of    into

two training sets of size



Proof of Lemma 2

It is straightforward to show that

Note that in the probability on the right-hand side, the 

dataset     is fixed. 

Thus, there are only a finite number of dichotomies that     

can generate on    .  Call this number              .

Let                          be the classifiers giving rise to these 

dichotomies



Proof of Lemma 2

Using this observation, we have



Final step

At this point, we have shown

Lemma 3 (Random partitions) 

For any and any ,

Proof follows from a simple lemma (also by Hoeffding)



Thus, for any            , we have that with probability

Putting it all together



Using the VC bound: The VC dimension

We went to a lot of trouble to show that if     is a break point 

for     , then 

The VC dimension of a hypothesis set    , denoted              , 

is the largest     for which              

• is the most points that      can shatter

• is 1 less than the smallest break point

True for



Examples

• Positive rays:

• Positive intervals:

• Convex sets:

• Linear classifiers in     :



VC dimension of general linear classifiers

For           ,        

In general

We will prove this by showing that                        and 



One direction

Lets first show that there exists a set of            points in     

that are shattered 

One can show that      is invertible



Can we shatter this data set?

For any                                      , can we find a vector     

satisfying                           ?

Easy! Just make                    and we have 



We can shatter a set of          points

What does this prove?

a)

b)

c)

d) None of the above 



To finish the proof

In order to show that                       , we need to show

a) There are           points we cannot shatter 

b) There are            points we cannot shatter

c) We cannot shatter any set of           points 

d) We cannot shatter any set of            points 



The other direction

Take any            points

More points than dimensions, so there must be some    for 

which

where not all       

Consider the dichotomy where the      with              are 

labeled                        , and 

No linear classifier can implement such a dichotomy!



If                                                 , then

This means that 

Thus

Why not?



Interpreting the VC dimension

We have just shown that for a linear classifier in 

How many parameters does a linear classifier in       have?



The usual examples

• Positive rays

–

– 1 parameter                

• Positive intervals

–

– 2 parameters 

• Convex sets

–

– as many parameters as you want



Effective number of parameters

Additional parameters do not always contribute additional 

degrees of freedom

Example

Take the output of a linear classifier, and then feed this into 

another linear classifier

The parameters     and     are totally redundant 

(they do not allow us to create any new 

classifiers/dichotomies)



Interpreting the VC bound

“Complexity” of hypothesis set

Error



VC bound in action

How big does our training set need to be?

Just to see how this behaves, let’s ignore the constants and 

suppose that



VC bound in action

RULE OF THUMB: n > 10 d_vc


