Recap

For a single hypothesis, we have

g Hén(h) ~ R(h)‘ > e} < De2¢n

For m = |H|hypotheses, and h™ € H, we have

pHﬁ;Uﬁ)—fahﬂ

> e} < Dme 2"

or equivalently, that with probability at least 1 — o
R(h*) < Ru(h*) 4 /% log 22

Bound becomes meaningless when |H| = oo



Hoeffding’s inequality

(X1, y1,X2,Y2, - ..

JX?’Layn)
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Union bound intuition

Consider many different h at once




An alternative picture

If all the “bad” datasets overlap, maybe we can handle much
bigger H than the union bound suggests



Big idea from last time

Rather than measuring the “size” of H with |H|, we can
instead think about:

Using £, how many ways can we label a dataset?
We call a particular labeling of X1, ..., X, a dichotomy

Using this language, we can answer our question via the

growth function my(n), which counts the most dichotomies
that H could ever generate on n points

It is easy to see that my(n) < 2"

e If my(n) = 2", we say that H can shatter a set of sizen

« If no set of size k can be shattered by H (my (k) < Dk )
then k is a break point



How many dichotomies?

You are given a hypothesis set which has a break point of 2

How many dichotomies can you get on 3 data points?

X1 X2 X3
O O O
O O O
O O O
—-————Cc—
O O O
—
—




Bottom line

For a given H, all we need is for a break point to exist

> (%)

k—1

polynomial with dominant termn”™

k—1

]

my(n) <

All that remains is to argue that we can actually replace |H|
with my,(n) to obtain an inequality along the lines of

R(h*) < Ru(h*) + /2 log 2220



VC generalization bound

We won’t be able to quite show

For technical reasons (which we will soon see), we will only
be able to show that with probability > 1 — o

R(h*) < Rp(h*) 4 y/$log“rgt)

This is called the VC generalization bound

Named after Vapnik and Chervonenkis, who proved it in 1971



Mathematical statement

Using Hoeffding’s inequality together with a union bound, we
were able to show that

P [max |§n(h) — R(h)| > e} < |H|-2e7 2"
heH
What the VC bound gives us is a generalization of the form

P {sup R,(h) — R(h)| > e] < 2.-myu(2n) - 2e 5"
heH

\

supremum: maximum over an infinite set



Supremum

The supremum of a set S C T is the least element of 7' that
is greater than or equal to all elements of S

Sometimes called the least upper bound

Examples
-sup{1,2,3} =3
-sup{z:0<x<1}=1
-sup{z:0<ax<1l}=1
-sup{l—1/n:n>0}=1

The magic in the proof of the VC bound is to realize that we
can relate the supremum over all h € ‘H to the maximum
over a finite number of h € H using a really cool trick!



Role of the growth function

We aim to get a bound on IP’[|§n(h) — R(h)| > €] that
holds for any h € H, i.e., a bound on

P {sup |§n(h) — R(h)| > €
heH

Perhaps it is not surprising that we can understand I/in(h)
using the growth function...

There may be infinitely many A € H, but H can only
generate my(n) unique dichotomies

Thus, I/-'En(h) can only take at most my/(n) different values

Unfortunately, R(h) can still take infinitely many different
values, and so there are infinitely many |R,,(h) — R(h)|



Fundamental insight

The key insight (or trick) is to consider two datasets!

We will imagine that in addition to our training data, we have

access to a second independent dataset (of size n), which we
call the ghost dataset

R distribution of
@ R/ (h) training error
€
/ I I L I

"R(h)  Ra(h)

Can we relateAIP)[|§n(h) — R(h)| > €] to something like
Pl| B (h) — Ry(h)] > €]



Using the ghost dataset

Suppose (for the moment) that the empirical estimates
R,(h) and R, (h) are random variables that are drawn from
a symmetric distribution with mean (and median) R(h)

Consider the following events:
- A the event that Il’in(h) — E(h)| > €
- B: the event that |R,(h) — R, (h)| > €

Claim: P[B|A] > 2

Thus P[B] = P[B|A] - P[A] > ZP[A]

= P[|R,(h) — R(R)| > €] < 2P[|Rn(h) — R, (h)| > €]



Using the ghost dataset

Unfortunately, the distribution of R,,(h) and E;}(h) is
binomial (not symmetric) so this exact statement doesn’t hold
in general, but the intuition is valid

Instead, we have the following bound:

Lemma 1 (Ghost dataset) @
P {sup |§n(h) — R(h)| > e}
heH

< 2P {sup R,(h) — R.(h)| > 5}
heH 2



Bounding the worst-case deviation

Lemma 2 (Where the magic happens)
Let S = {(Xi,yi),i = 1,...,2n}. Then

P |sup |R,(h) — R, (h)| > 5}
heH 2

< my(2n) -supsupP [|§n(h) — ﬁ;(h)\ > =
S heH 2

5

!

here, the dataset S is fixed
the probability is with respect
to a random partition of .S into
two training sets of size n



Proof of Lemma 2

It is straightforward to show that

P |sup |R.(h) — R, (h)| > E}
heH 2

< supP {Sup Ro(h) — R.(h)| > = s}
S heH 2

Note that in the probability on the right-hand side, the
dataset S is fixed.

Thus, there are only a finite number of dichotomies that ‘H
can generate on S. Call this number m(S).

Let hi, ..., hn,,(s) be the classifiers giving rise to these
dichotomies



Proof of Lemma 2

Using this observation, we have

P {sup |§n(h) — ﬁ;(h)\ > < S}
heH 2
A~ _ E
=P max | R, (h; — R h;)| > —=|S
|:I’L1,...,hm,ﬂ(5) I ( ) ’I’L( )| 2 :|
mH(S)

~ ~ €
< 3 P |[Ra(h) = Ry(h)| > 5
1=1

s

< my(S) max P [@n(hz‘) — R, (k)| > g

ICRERY | hm%(S)

s

< my(2n) - SUP P [|R‘n(h) —R.(h)| > % s}

heH



Final step

At this point, we have shown

P {sup |§n(h) — R(h)| > e}
heH

<2 -my(2n) -supsupP [|§n(h) — ﬁ;(h)| > - S}
S heH 2

Lemma 3 (Random partitions)
For any h and any S,

P ||Ra(h) — B, ()] > 5|S| < 275"

Proof follows from a simple lemma (also by Hoeffding)



Putting it all together

P {sup IR,(h) — R(R)| > e]
heH

<OP {Sup R,(h) — R (k)| > 5}
heH 2

<2-my(2n) - -supsupP [|§n(h) — ﬁ;(h)l > -
S heH 2

J
< 2.-my(2n) - 2e 5™

Thus, for any A € H , we have that with probability > 1 — 9

-~ 8 4my(2n)
R(h) < Ru(h) + \/g log =™




Using the VC bound: The VC dimension

We went to a lot of trouble to show that if k is a break point
for H , then my(n) < S ()_ =1 41q

m) R(h) < ﬁn(h) -+ \/% log 4((2n);—1+1) e for
gﬁn(h)-l-\/@mg%” vz 3

The VC dimension of a hypothesis set H, denoted dy,c(H),
is the largest n for which my(n) = 2"

e dyc(H) is the most points that H can shatter
e dyc(H) is 1 less than the smallest break point

= R(h) S Ru(h)+ \/% log &2




Examples

Positive rays:

dyc = 1
Positive intervals:

dvc = 2
Convex sets:

d\/c — OO

Linear classifiers in R:
dvC

|
W



VC dimension of general linear classifiers

Ford =2, dyc = 3

o

In general dyc = d + 1

We will prove this by showing that dyc < d + 1 and
dvc 2 d—+1



One direction

Lets first show that there exists a set of d + 1 points in R?
that are shattered

- -~ 7 1 0O 07
_X —_
b 1 10 0
X = 2 — |1 0 1 0
il
L TR+ 1 0 0 1]
\ ' J
d+ 1

One can show that X is invertible



Can we shatter this data set?

Foranyy —

i Y1
Y2

_yd—|—1_

-1

-1

-1

satisfying sign(X@) =y ?

, can we find a vector

Easy! Just make @ = X1y and we have

sign(X6@) = sign(y) =y



We can shatter a set of d 4+ 1 points
What does this prove?

a) dyc =d—+1

b) dvc > d+ 1 J

c) dvc <d—+1

d) None of the above



To finish the proof
In order to show that dyvc < d + 1, we need to show
a) There are d + 1 points we cannot shatter
b) There are d + 2 points we cannot shatter
c) We cannot shatter any set ofd 4+ 1 points

d) We cannot shatter any set of d + 2 points v



The other direction

Take any d + 2 points X1, ..., X440
More points than dimensions, so there must be some 4 for
which = Z i
7]
where not all o; = O
Consider the dichotomy where the x; with o; 7= O are

labeled y; = sign(«;), and y; = —1

No linear classifier can implement such a dichotomy!



Xj = E QX -y HTE(/J' = E aiOTii

i7] 17
If y;, = SIgﬂ(@Tiz) = Sign(ai), then aiHTii > 0

This means that BTij —_— Z a@-GTi@- > 0
i#]

Thus y; = sign(8'x;) = +1



Interpreting the VC dimension

We have just shown that for a linear classifier in R¢

dyc > d -

- 1
= dvc =d—+1

dyc < d A

-1

How many parameters does a linear classifier in R have?

W &
b e

Rd

d+1
” — +



The usual examples

e Positive rays
- dyc =1
- 1 parameter

e Positive intervals
- dVC p— 2

- 2 parameters

e Convex sets
- dyc =
- as many parameters as you want



Effective number of parameters

Additional parameters do not always contribute additional
degrees of freedom

Example

Take the output of a linear classifier, and then feed this into
another linear classifier

y; = sign (v’ (sign(8'x;)) + b')

The parameters w’and b’ are totally redundant
(they do not allow us to create any new
classifiers/dichotomies)



Interpreting the VC bound

Error

“Complexity” of hypothesis set

dvc



VC bound in action

How big does our training set need to be?

R(h) § Ra(h) + /%< log 82

Y
€

Just to see how this behaves, let’s ighore the constants and

suppose that
d
€ ~ \/LC log n
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VC bound in action
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RULE OF THUMB: n > 10dv/c



