Recap

For a single hypothesis, we have

$$
\mathbb{P}\left[\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} n}
$$

For $m=|\mathcal{H}|$ hypotheses, and $h^{*} \in \mathcal{H}$, we have

$$
\mathbb{P}\left[\left|\widehat{R}_{n}\left(h^{*}\right)-R\left(h^{*}\right)\right|>\epsilon\right] \leq 2 m e^{-2 \epsilon^{2} n}
$$

or equivalently, that with probability at least $1-\delta$

$$
R\left(h^{*}\right) \leq \widehat{R}_{n}\left(h^{*}\right)+\sqrt{\frac{1}{2 n} \log \frac{2 m}{\delta}}
$$

Bound becomes meaningless when $|\mathcal{H}|=\infty$

Hoeffding's inequality

Union bound intuition

Consider many different h at once

An alternative picture

If all the "bad" datasets overlap, maybe we can handle much bigger \mathcal{H} than the union bound suggests

Big idea from last time

Rather than measuring the "size" of \mathcal{H} with $|\mathcal{H}|$, we can instead think about:

Using \mathcal{H}, how many ways can we label a dataset?
We call a particular labeling of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ a dichotomy
Using this language, we can answer our question via the growth function $m_{\mathcal{H}}(n)$, which counts the most dichotomies that \mathcal{H} could ever generate on n points

It is easy to see that $m_{\mathcal{H}}(n) \leq 2^{n}$

- If $m_{\mathcal{H}}(n)=2^{n}$, we say that \mathcal{H} can shatter a set of size n
- If no set of size k can be shattered by $\mathcal{H}\left(m_{\mathcal{H}}(k)<2^{k}\right)$ then k is a break point

How many dichotomies?

You are given a hypothesis set which has a break point of 2
How many dichotomies can you get on 3 data points?

Bottom line

For a given \mathcal{H}, all we need is for a break point to exist

$$
m_{\mathcal{H}}(n) \leq \underbrace{\sum_{i=0}^{k-1}\binom{n}{i}}_{i=0}
$$

polynomial with dominant term n^{k-1}

All that remains is to argue that we can actually replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(n)$ to obtain an inequality along the lines of

$$
R\left(h^{*}\right) \leq \widehat{R}_{n}\left(h^{*}\right)+\sqrt{\frac{1}{2 n} \log \frac{2 m_{\mathcal{H}}(n)}{\delta}}
$$

VC generalization bound

We won't be able to quite show

$$
R\left(h^{*}\right) \leq \widehat{R}_{n}\left(h^{*}\right)+\sqrt{\frac{1}{2 n} \log \frac{2 m_{\mathcal{H}}(n)}{\delta}}
$$

For technical reasons (which we will soon see), we will only be able to show that with probability $\geq 1-\delta$

$$
R\left(h^{*}\right) \leq \widehat{R}_{n}\left(h^{*}\right)+\sqrt{\frac{8}{n} \log \frac{\left(4 i n_{H}(2 n)\right.}{\delta}}
$$

This is called the VC generalization bound
Named after Vapnik and Chervonenkis, who proved it in 1971

Mathematical statement

Using Hoeffding's inequality together with a union bound, we were able to show that

$$
\mathbb{P}\left[\max _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right] \leq|\mathcal{H}| \cdot 2 e^{-2 \epsilon^{2} n}
$$

What the VC bound gives us is a generalization of the form

$$
\mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right] \leq 2 \cdot m_{\mathcal{H}}(2 n) \cdot 2 e^{-\frac{1}{8} \epsilon^{2} n}
$$

supremum: maximum over an infinite set

Supremum

The supremum of a set $S \subset T$ is the least element of T that is greater than or equal to all elements of S

Sometimes called the least upper bound
Examples

$$
\begin{aligned}
& -\sup \{1,2,3\}=3 \\
& -\sup \{x: 0 \leq x \leq 1\}=1 \\
& -\sup \{x: 0<x<1\}=1 \\
& -\sup \{1-1 / n: n>0\}=1
\end{aligned}
$$

The magic in the proof of the VC bound is to realize that we can relate the supremum over all $h \in \mathcal{H}$ to the maximum over a finite number of $h \in \mathcal{H}$ using a really cool trick!

Role of the growth function

We aim to get a bound on $\mathbb{P}\left[\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right]$ that holds for any $h \in \mathcal{H}$, i.e., a bound on

$$
\mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right]
$$

Perhaps it is not surprising that we can understand $\widehat{R}_{n}(h)$ using the growth function...

There may be infinitely many $h \in \mathcal{H}$, but \mathcal{H} can only generate $m_{\mathcal{H}}(n)$ unique dichotomies Thus, $\widehat{R}_{n}(h)$ can only take at most $m_{\mathcal{H}}(n)$ different values Unfortunately, $R(h)$ can still take infinitely many different values, and so there are infinitely many $\left|\widehat{R}_{n}(h)-R(h)\right|$

Fundamental insight

The key insight (or trick) is to consider two datasets!
We will imagine that in addition to our training data, we have access to a second independent dataset (of size n), which we call the ghost dataset

Can we relate $\mathbb{P}\left[\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right]$ to something like $\mathbb{P}\left[\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\epsilon\right]$?

Using the ghost dataset

Suppose (for the moment) that the empirical estimates $\widehat{R}_{n}(h)$ and $\widehat{R}_{n}^{\prime}(h)$ are random variables that are drawn from a symmetric distribution with mean (and median) $R(h)$

Consider the following events:

- A : the event that $\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon$
- B : the event that $\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\epsilon$

Claim: $\mathbb{P}[B \mid A] \geq \frac{1}{2}$
Thus $\mathbb{P}[B]=\mathbb{P}[B \mid A] \cdot \mathbb{P}[A] \geq \frac{1}{2} \mathbb{P}[A]$
$\longrightarrow \mathbb{P}\left[\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right] \leq 2 \mathbb{P}\left[\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\epsilon\right]$

Using the ghost dataset

Unfortunately, the distribution of $\widehat{R}_{n}(h)$ and $\widehat{R}_{n}^{\prime}(h)$ is binomial (not symmetric) so this exact statement doesn't hold in general, but the intuition is valid

Instead, we have the following bound:
Lemma 1 (Ghost dataset)

$$
\begin{aligned}
& \mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right] \\
& \quad \leq 2 \mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]
\end{aligned}
$$

Bounding the worst-case deviation

Lemma 2 (Where the magic happens)
Let $S=\left\{\left(\mathrm{x}_{i}, y_{i}\right), i=1, \ldots, 2 n\right\}$. Then
$\mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$

$$
\leq m_{\mathcal{H}}(2 n) \cdot \sup _{S} \sup _{h \in \mathcal{H}} \mathbb{P} \underbrace{\left[\left.\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2} \right\rvert\, S\right]}
$$

here, the dataset S is fixed the probability is with respect to a random partition of S into two training sets of size n

Proof of Lemma 2

It is straightforward to show that

$$
\begin{aligned}
& \mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \\
& \quad \leq \sup _{S} \mathbb{P}\left[\left.\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2} \right\rvert\, S\right]
\end{aligned}
$$

Note that in the probability on the right-hand side, the dataset S is fixed.

Thus, there are only a finite number of dichotomies that \mathcal{H} can generate on S. Call this number $m_{\mathcal{H}}(S)$.

Let $h_{1}, \ldots, h_{m_{\mathcal{H}}(S)}$ be the classifiers giving rise to these dichotomies

Proof of Lemma 2

Using this observation, we have
$\mathbb{P}\left[\left.\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2} \right\rvert\, S\right]$

$$
\begin{aligned}
& =\mathbb{P}\left[\left.\max _{h_{1}, \ldots, h_{m_{\mathcal{H}}(s)}}\left|\widehat{R}_{n}\left(h_{i}\right)-\widehat{R}_{n}^{\prime}\left(h_{i}\right)\right|>\frac{\epsilon}{2} \right\rvert\, S\right] \\
& \leq \sum_{i=1}^{m_{\mathcal{H}}(S)} \mathbb{P}\left[\left.\left|\widehat{R}_{n}\left(h_{i}\right)-\widehat{R}_{n}^{\prime}\left(h_{i}\right)\right|>\frac{\epsilon}{2} \right\rvert\, S\right] \\
& \leq m_{\mathcal{H}}(S) \max _{h_{1}, \ldots, h_{m_{\mathcal{H}}(s)}} \mathbb{P}\left[\left.\left|\widehat{R}_{n}\left(h_{i}\right)-\widehat{R}_{n}^{\prime}\left(h_{i}\right)\right|>\frac{\epsilon}{2} \right\rvert\, S\right] \\
& \leq m_{\mathcal{H}}(2 n) \cdot \sup _{h \in \mathcal{H}} \mathbb{P}\left[\left.\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2} \right\rvert\, S\right]
\end{aligned}
$$

Final step

At this point, we have shown
$\mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right]$

$$
\leq 2 \cdot m_{\mathcal{H}}(2 n) \cdot \sup _{S} \sup _{h \in \mathcal{H}} \mathbb{P}\left[\left.\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2} \right\rvert\, S\right]
$$

Lemma 3 (Random partitions)
For any h and any S,

$$
\mathbb{P}\left[\left.\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2} \right\rvert\, S\right] \leq 2 e^{-\frac{1}{8} \epsilon^{2} n}
$$

Proof follows from a simple lemma (also by Hoeffding)

Putting it all together

$\mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-R(h)\right|>\epsilon\right]$

$$
\begin{aligned}
& \leq 2 \mathbb{P}\left[\sup _{h \in \mathcal{H}}\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \\
& \leq 2 \cdot m_{\mathcal{H}}(2 n) \cdot \sup _{S} \sup _{h \in \mathcal{H}} \mathbb{P}\left[\left.\left|\widehat{R}_{n}(h)-\widehat{R}_{n}^{\prime}(h)\right|>\frac{\epsilon}{2} \right\rvert\, S\right] \\
& \leq 2 \cdot m_{\mathcal{H}}(2 n) \cdot 2 e^{-\frac{1}{8} \epsilon^{2} n}
\end{aligned}
$$

Thus, for any $h \in \mathcal{H}$, we have that with probability $\geq 1-\delta$

$$
R(h) \leq \widehat{R}_{n}(h)+\sqrt{\frac{8}{n} \log \frac{4 m_{\mathcal{H}}(2 n)}{\delta}}
$$

Using the VC bound: The VC dimension

We went to a lot of trouble to show that if k is a break point for \mathcal{H}, then $m_{\mathcal{H}}(n) \leq \sum_{i=0}^{k-1}\binom{n}{i} \leq n^{k-1}+1$

$$
\begin{aligned}
\Longrightarrow R(h) & \leq \widehat{R}_{n}(h)+\sqrt{\frac{8}{n} \log \frac{4\left((2 n)^{k-1}+1\right)}{\delta}} \\
& \lesssim \widehat{R}_{n}(h)+\sqrt{\frac{8(k-1)}{n} \log \frac{8 n}{\delta}} \longleftarrow \begin{array}{l}
\text { True for } \\
k \geq 3
\end{array}, \quad l
\end{aligned}
$$

The VC dimension of a hypothesis set \mathcal{H}, denoted $d_{\mathrm{VC}}(\mathcal{H})$, is the largest n for which $m_{\mathcal{H}}(n)=2^{n}$

- $d_{\mathrm{VC}}(\mathcal{H})$ is the most points that \mathcal{H} can shatter
- $d_{\mathrm{VC}}(\mathcal{H})$ is 1 less than the smallest break point

$$
\Rightarrow R(h) \lesssim \widehat{R}_{n}(h)+\sqrt{\frac{8 d_{v c}}{n} \log \frac{8 n}{\delta}}
$$

Examples

- Positive rays:

$$
d_{\vee c}=1
$$

- Positive intervals:

$$
d_{\vee c}=2
$$

- Convex sets:

$$
d_{\vee c}=\infty
$$

- Linear classifiers in \mathbb{R}^{2} :

$$
d \vee c=3
$$

VC dimension of general linear classifiers

For $d=2, d \vee c=3$

In general $d_{\vee C}=d+1$

We will prove this by showing that $d_{\mathrm{Vc}} \leq d+1$ and $d_{\vee \mathrm{c}} \geq d+1$

One direction

Lets first show that there exists a set of $d+1$ points in \mathbb{R}^{d} that are shattered

$$
\mathbf{X}=\underbrace{\left[\begin{array}{c}
-\widetilde{\mathbf{x}}_{1}^{T}- \\
-\widetilde{\mathbf{x}}_{2}^{T}- \\
\vdots \\
-\widetilde{\mathbf{x}}_{d+1}^{T}-
\end{array}\right]}_{d+1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & & 0 \\
1 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & & 0 \\
& \vdots & & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

One can show that X is invertible

Can we shatter this data set?

For any $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{d+1}\end{array}\right]=\left[\begin{array}{c} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1\end{array}\right]$, can we find a vector
satisfying $\operatorname{sign}(\mathbf{X} \boldsymbol{\theta})=\mathrm{y}$?
Easy! Just make $\boldsymbol{\theta}=\mathbf{X}^{-1} \mathbf{y}$ and we have

$$
\operatorname{sign}(\mathbf{X} \theta)=\operatorname{sign}(y)=y
$$

We can shatter a set of $d+1$ points

What does this prove?
a) $d_{\vee \mathrm{V}}=d+1$
b) $d \vee \mathrm{Vc} \geq d+1$
c) $d \vee \mathrm{Vc} \leq d+1$
d) None of the above

To finish the proof

In order to show that $d_{\mathrm{Vc}} \leq d+1$, we need to show
a) There are $d+1$ points we cannot shatter
b) There are $d+2$ points we cannot shatter
c) We cannot shatter any set of $d+1$ points
d) We cannot shatter any set of $d+2$ points

The other direction

Take any $d+2$ points $\widetilde{\mathbf{x}}_{1}, \ldots, \widetilde{\mathbf{x}}_{d+2}$
More points than dimensions, so there must be some j for which

$$
\widetilde{\mathbf{x}}_{j}=\sum_{i \neq j} \alpha_{i} \widetilde{\mathbf{x}}_{i}
$$

where not all $\alpha_{i}=0$
Consider the dichotomy where the $\widetilde{\mathbf{x}}_{i}$ with $\alpha_{i} \neq 0$ are labeled $y_{i}=\operatorname{sign}\left(\alpha_{i}\right)$, and $y_{j}=-1$

No linear classifier can implement such a dichotomy!

Why not?

$$
\widetilde{\mathbf{x}}_{j}=\sum_{i \neq j} \alpha_{i} \widetilde{\mathbf{x}}_{i} \Longrightarrow \boldsymbol{\theta}^{T} \widetilde{\mathbf{x}}_{j}=\sum_{i \neq j} \alpha_{i} \boldsymbol{\theta}^{T} \widetilde{\mathbf{x}}_{i}
$$

If $y_{i}=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \widetilde{\mathbf{x}}_{i}\right)=\operatorname{sign}\left(\alpha_{i}\right)$, then $\alpha_{i} \boldsymbol{\theta}^{T} \widetilde{\mathbf{x}}_{i}>0$
This means that $\boldsymbol{\theta}^{T} \widetilde{\mathbf{x}}_{j}=\sum_{i \neq j} \alpha_{i} \boldsymbol{\theta}^{T} \widetilde{\mathbf{x}}_{i}>0$
Thus $y_{j}=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \widetilde{\mathbf{x}}_{j}\right)=+1$

Interpreting the VC dimension

We have just shown that for a linear classifier in \mathbb{R}^{d}

$$
\begin{aligned}
& d \vee \vee \mathrm{x} \geq d+1 \\
& d_{\vee \mathrm{C}} \leq d+1
\end{aligned} \quad \quad \quad \quad d \quad d \vee \mathrm{VC}=d+1
$$

How many parameters does a linear classifier in \mathbb{R}^{d} have?

$$
\begin{aligned}
\mathbf{w} & \in \mathbb{R}^{d} \\
b & \in \mathbb{R}
\end{aligned} \quad \quad \quad \quad d+1
$$

The usual examples

- Positive rays
- $d \vee c=1$
- 1 parameter
- Positive intervals
- $d_{\mathrm{Vc}}=2$
- 2 parameters
- Convex sets
- $d_{V C}=\infty$
- as many parameters as you want

Effective number of parameters

Additional parameters do not always contribute additional degrees of freedom

Example

Take the output of a linear classifier, and then feed this into another linear classifier

$$
y_{i}=\operatorname{sign}\left(w^{\prime}\left(\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{i}\right)\right)+b^{\prime}\right)
$$

The parameters w^{\prime} and b^{\prime} are totally redundant (they do not allow us to create any new classifiers/dichotomies)

Interpreting the VC bound

VC bound in action

How big does our training set need to be?

$$
R(h) \lesssim \widehat{R}_{n}(h)+\underbrace{\sqrt{\frac{8 d_{v c}}{n} \log \frac{8 n}{\delta}}}_{\epsilon}
$$

Just to see how this behaves, let's ignore the constants and suppose that

$$
\epsilon \sim \sqrt{\frac{d_{\mathrm{VC}}}{n} \log n}
$$

VC bound in action

RULE OF THUMB: $n \geq 10 d \mathrm{Vc}$

