
Beyond classification

In supervised learning problems we are given training data

where             , and so far we have only considered the case 
where                           (or                                  ) 

What if             ?

This problem is usually called regression

You can think of regression as being an extension of 
classification as the number of classes grows to

Regression

A regression model typically posits that our training data are 
realizations of a random pair             where 

with     representing noise and     belonging to some class of 
functions 

Example function classes

• polynomials

• sinusoids/trigonometric polynomials

• exponentials

• kernels

Linear regression

In linear regression, we assume that     is an affine function, 
i.e.,  

where            , 

How can we estimate          from the training data? 

Least squares

In least squares linear regression, we select           to 
minimize the sum of squared errors 

Least squares is (arguably) the most fundamental tool in all of 
applied mathematics!
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Example

Suppose           , so that         are scalars

How to minimize?

Example

Rearranging these equations, we obtain

or in matrix form

Example

Inverting the matrix

Setting                      and                     , the solution to this 
system reduces to 

Example



General least squares

Suppose    is arbitrary.  Set

Then 

General least squares

The minimizer     of this quadratic objective function is

provided that           is nonsingular

“Proof”

Does linear regression always make sense?

Official US DOT forecasts of road traffic, compared to actual

Nonlinear feature maps

Sometimes linear methods (in both regression and 
classification) just don’t work

One way to create nonlinear estimators or classifiers is to first 
transform the data via a nonlinear feature map

After applying     , we can then try applying a linear method 
to the transformed data



Regression

In the case of regression, our model becomes

where now

Example. Suppose            but          is a cubic polynomial.  
How do we find a least squares estimate of    from training 
data?  

Overfitting

Overfitting Overfitting



Overfitting Overfitting

Is the problem just noise?

Noise in the observations can make overfitting a big problem

What if there is no noise?

Runge’s phenomenon

Take a smooth function
– not exactly polynomial

– well approximated by
a polynomial

Even in the absence of noise,
fitting a higher order
polynomial (interpolation)
can be incredibly unstable

Regression summary

Minimizer given by

provided that           is nonsingular



Regularization and regression

Overfitting occurs as the number of features     begins to 
approach the number of observations      

In this regime, we have too many degrees of freedom

Idea: penalize candidate solutions for using too many features

One candidate regularizer:

is a “tuning parameter” that controls the tradeoff 
between fit and complexity

Tikhonov regularization

This is one example of a more general 
technique called Tikhonov regularization

(Note that     has been replaced by the matrix    )

Solution: Observe that

Tikhonov regularization

Setting this equal to zero and solving for     yields

Suppose                ,  then

for suitable choice of    ,
always well-conditioned

Ridge regression

In the context of regression, Tikhonov regularization has a 
special name: ridge regression

Ridge regression is essentially exactly what we have been 
talking about, but in the special case where

We are penalizing all coefficients in     equally, but not 
penalizing the offset 



Another take: Constrained minimization

One can use Lagrange multipliers (KKT conditions) to show 
that

is formally equivalent to

for a suitable choice of

Tikhonov versus least squares

Assume             and that      has orthonormal columns

Tikhonov regularization is equivalent to shrinking the least
squares solution towards the origin 

Tikhonov versus least squares

In general, we have this picture

Tikhonov regularization still shrinking the least squares 
solution towards the origin 

Shrinkage estimators

Tikhonov regularization is one type of shrinkage estimator

Shrinkage estimators are estimators that “shrink” the naïve 
estimate towards some implicit guess

Example: How do we estimate the variance in a sample?
Let                   be     i.i.d. samples drawn according to some 
unknown distribution.  How can we estimate the variance?

This is a biased estimate (it shrinks slightly towards zero), 
however, it also achieves a lower MSE than the unbiased 
estimate



Stein’s paradox

Examples where shrinkage estimators work fundamentally 
better than naïve estimates are much more common than you 
would think!

Stein’s paradox (1955)

Consider the estimation problem where you
observe                   , where     is i.i.d. Gaussian
noise. 
A natural estimate for    is           .
If the dimension is 3 or higher, then this is suboptimal in 
terms of the MSE

One can do better by shrinking towards any guess for    
– people usually shrink towards the origin
– a better guess leads to bigger improvements

Alternative regularizers

• Akaike information criterion (AIC)

• Bayesian information criterion (BIC)

• Least absolute shrinkage and selection operator (LASSO)

– also results in shrinkage, but where all coordinates are shrunk 
by the same amount

– promotes sparsity
– can think of         as a more computationally tractable 

replacement for


