
Beyond classification

In supervised learning problems we are given training data

where             , and so far we have only considered the case 

where                           (or                                  ) 

What if             ?

This problem is usually called regression

You can think of regression as being an extension of 

classification as the number of classes grows to



Regression

A regression model typically posits that our training data are 

realizations of a random pair             where 

with     representing noise and     belonging to some class of 

functions 

Example function classes

• polynomials

• sinusoids/trigonometric polynomials

• exponentials

• kernels



Linear regression

In linear regression, we assume that     is an affine function, 

i.e.,  

where            , 

How can we estimate          from the training data? 



Least squares

In least squares linear regression, we select           to 

minimize the sum of squared errors 

Least squares is (arguably) the most fundamental tool in all of 

applied mathematics!
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Example

Suppose           , so that         are scalars

How to minimize?



Example

Rearranging these equations, we obtain

or in matrix form



Example

Inverting the matrix

Setting                      and                     , the solution to this 

system reduces to 



Example



General least squares

Suppose    is arbitrary.  Set

Then 



General least squares

The minimizer     of this quadratic objective function is

provided that           is nonsingular

“Proof”



Does linear regression always make sense?

Official US DOT forecasts of road traffic, compared to actual



Nonlinear feature maps

Sometimes linear methods (in both regression and 

classification) just don’t work

One way to create nonlinear estimators or classifiers is to first 

transform the data via a nonlinear feature map

After applying     , we can then try applying a linear method 

to the transformed data



Regression

In the case of regression, our model becomes

where now

Example. Suppose            but          is a cubic polynomial.  

How do we find a least squares estimate of    from training 

data?  



Overfitting
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Is the problem just noise?

Noise in the observations can make overfitting a big problem

What if there is no noise?

Runge’s phenomenon

Take a smooth function

– not exactly polynomial

– well approximated by

a polynomial

Even in the absence of noise,

fitting a higher order

polynomial (interpolation)

can be incredibly unstable



Regression summary

Minimizer given by

provided that           is nonsingular



Regularization and regression

Overfitting occurs as the number of features     begins to 

approach the number of observations      

In this regime, we have too many degrees of freedom

Idea: penalize candidate solutions for using too many features

One candidate regularizer:

is a “tuning parameter” that controls the tradeoff 

between fit and complexity



Tikhonov regularization

This is one example of a more general 

technique called Tikhonov regularization

(Note that     has been replaced by the matrix    )

Solution: Observe that



Tikhonov regularization

Setting this equal to zero and solving for     yields

Suppose                ,  then

for suitable choice of    ,

always well-conditioned



Ridge regression

In the context of regression, Tikhonov regularization has a 

special name: ridge regression

Ridge regression is essentially exactly what we have been 

talking about, but in the special case where

We are penalizing all coefficients in     equally, but not 

penalizing the offset 



Another take: Constrained minimization

One can use Lagrange multipliers (KKT conditions) to show 

that

is formally equivalent to

for a suitable choice of



Tikhonov versus least squares

Assume             and that      has orthonormal columns

Tikhonov regularization is equivalent to shrinking the least

squares solution towards the origin 



Tikhonov versus least squares

In general, we have this picture

Tikhonov regularization still shrinking the least squares 

solution towards the origin 



Shrinkage estimators

Tikhonov regularization is one type of shrinkage estimator

Shrinkage estimators are estimators that “shrink” the naïve 

estimate towards some implicit guess

Example: How do we estimate the variance in a sample?

Let                   be     i.i.d. samples drawn according to some 

unknown distribution.  How can we estimate the variance?

This is a biased estimate (it shrinks slightly towards zero), 

however, it also achieves a lower MSE than the unbiased 

estimate



Stein’s paradox

Examples where shrinkage estimators work fundamentally 

better than naïve estimates are much more common than you 

would think!

Stein’s paradox (1955)

Consider the estimation problem where you

observe                   , where     is i.i.d. Gaussian

noise. 

A natural estimate for    is           .

If the dimension is 3 or higher, then this is suboptimal in 

terms of the MSE

One can do better by shrinking towards any guess for    

– people usually shrink towards the origin

– a better guess leads to bigger improvements



Alternative regularizers

• Akaike information criterion (AIC)

• Bayesian information criterion (BIC)

• Least absolute shrinkage and selection operator (LASSO)

– also results in shrinkage, but where all coordinates are shrunk 

by the same amount

– promotes sparsity

– can think of         as a more computationally tractable 

replacement for


