
Regression and Regularization

For the regression problem, we observe (x1, y1), . . . , (xn, yn), with
xi ∈ Rd and yi ∈ R, and try to estimate a function f (x) : Rd → R.
We fit this function by trading off two factors:

1. Data Fidelity. Our solution should satisfy

f (xi) ≈ yi, for i = 1, . . . , n

This is typically quantified using a loss function, which pe-
nalizes the deviations of f (xi) from yi. This typically has the
form of a single scalar function that is applied to each data
point and then added up:

Loss(f, {xi}ni=1, {yi}ni=1) =
n∑
i=1

L(f (xi), yi)

One commonly used loss function is squared-error,

L(f (xi), yi) = (yi − f (xi))
2.

2. Modeling and Regularization. We can temper the re-
gression function in one of two ways. The first is to simply
restrict it to lying in some function class F . We then solve

minimize
f∈F

n∑
i=1

L(f (xi), yi).

For example, we might consider the set of linear functions:

F = {f : f (x) = βTx + β0 for some β ∈ Rd, β0 ∈ R}.
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The problem of estimating the function f : Rd → R is now

distilled down to the problem of estimating a vector θ =

[
β0

β

]
∈

Rd+1.

There are of course trade-offs in choosing F . A larger F gives
us a richer class of functions to choose from, but we run the risk
of overfitting — the empirical risk 1

n

∑n
i=1L(f ∗(xi, yi)) might

be very different than the true risk E[L(f ∗(X), Y )] of our choice
f ∗.

The second way to mitigate the danger of overfitting is to use a
large, rich set F , but then have some penalty on the complex-
ity of the choices of f inside of this class. This “complexity”
is quantified using a regularization function r(f ) — there are
many choices of r we might consider. We then solve

minimize
f∈F

n∑
i=1

L(f (xi), yi) + λ r(f ),

where λ ≥ 0 is a user-specified parameter that controls the
balance between these two terms.
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Example: Linear regression using the LASSO

Let’s look carefully at one particular (and popular!) technique for
regression. We will use the squared-error loss along with F as the
set of linear (plus offset) functions on Rd:

L(f (xi), yi) = (yi − βTxi − β0)
2 = (yi − θTx̃i)

2,

where

θ =

[
β0

β

]
, x̃i =

[
1
xi

]
.

Stacking the x̃T
i up as rows of a n× (d+ 1) matrix A and collecting

the yi into a single vector,

A =


1 xT

1

1 xT
2

... ...
1 xT

n

 , y =


y1

y2
...
yn


we can write

n∑
i=1

L(f (xi), yi) = ‖y −Aθ‖2
2.

For the penalty, we use the sum of the absolute values of the entries
in θ:

r(f ) =
d+1∑
i=1

|θ(i)| = ‖θ‖1.

Our optimization program is now1

(LASSO) minimize
θ

1

2
‖y −Aθ‖2

2 + λ‖θ‖1.

1We have introduced the factor of 1/2 in front of the loss simply for conve-
nience and consistency with the literature.
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This regression technique is commonly referred to as the LASSO.

The motivation for using the `1 norm as a regularizer is that doing
so tends to produce θ which have a small number of non-zero terms.
This is certainly true in practice, and we can do a little bit of analysis
that explains why.

Specifically, we can show that there is a solution to (LASSO) above
that has at most n non-zero entries using a relatively simple argu-
ment. Let θ be any vector with more than n non-zero terms in
it:

nnz(θ) := #{i : θ(i) 6= 0} ≥ n + 1.

Then at least one of the following is true:

1. There is another θ′ ∈ Rd+1 such that nnz(θ′) ≤ nnz(θ) and

1

2
‖y −Aθ′‖2

2 + λ‖θ′‖1 <
1

2
‖y −Aθ‖2

2 + λ‖θ‖1,

or

2. there is another θ′ ∈ Rd+1 such that nnz(θ′) < nnz(θ) and

1

2
‖y −Aθ′‖2

2 + λ‖θ′‖1 =
1

2
‖y −Aθ‖2

2 + λ‖θ‖1.

Given θ as above, let Γ be the locations of the non-zero terms in θ:

Γ = {i : θ(i) 6= 0}.

We are supposing that |Γ| ≥ n + 1. Since |Γ| is greater than the
number of rows in A, there is at least one vector z that is also
supported on Γ,

z(i) = 0, for i 6∈ Γ,
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such that αz ∈ Null(A) for all α ∈ R. We will show that by adding
a little bit of z to θ, we can hold the `2 loss term constant while either
decreasing the `1 regularization term or driving one of the non-zero
terms to zero. Notice that

‖y −A(θ + εz)‖2
2 = ‖y −Aθ‖2

2

for all ε > 0, since z ∈ Null(A).

Now let sθ be the vector supported on Γ that contains the signs of
the non-zero entries of θ:

sθ(i) =

{
sign(θ(i)), i ∈ Γ

0, i 6∈ Γ
.

We consider two cases: sT
θ z 6= 0 and sT

θ z = 0.

First, suppose that sT
θ z 6= 0. Without loss of generality, we can

assume that sT
θ z < 0, as otherwise we can just replace z with −z

(since both of these are supported on Γ and are in the nullspace of
A). Notice that we can write

‖θ‖1 =
d+1∑
i=1

|θ(i)| =
d+1∑
i=1

sign(θ(i))θ(i)

For ε > 0 small enough, it is a fact that

sign(θ(i) + εz(i)) = sign(θ(i)), for all i ∈ Γ,
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and so

‖θ + εz‖1 =
d+1∑
i=1

sign(θ(i) + εz(i))(θ(i) + εz(i))

=
d+1∑
i=1

sign(θ(i))(θ(i) + εz(i))

= ‖θ‖1 + εsT
θ z

< ‖θ‖1.

Thus, taking θ′ = θ + εz for a small enough value of ε > 0 gives a
vector with a smaller functional value, so θ cannot be a solution to
(LASSO).

Now suppose that sT
θ z = 0. Then

‖θ‖1 = ‖θ + εz‖1

as long as θ+ εz remains non-zero on Γ. But there must be at least
one i ∈ Γ such that

sign(θ(i)) 6= sign(z(i)),

otherwise the inner product could not be equal to zero. Let i′ be
the index that obeys the condition above such that θ(i) is smallest
relative to z(i):

i′ = arg min
i∈Γ

{|θ(i)|
|z(i)|

: sign(θ(i)) 6= sign(z(i))

}
.

Then

θ′ = θ +
|θ(i′)|
|z(i′)|

z,
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will be exactly equal to zero at i′ and will still be non-zero outside of
Γ. Thus

nnz(θ′) < nnz(θ),

while
1

2
‖y −Aθ′‖2

2 + λ‖θ′‖1 =
1

2
‖y −Aθ‖2

2 + λ‖θ‖1.

The LASSO as a quadratic program

Unlike standard least-squares, or least-squares with Tikhonov regu-
larization, the solution to the LASSO does not have a closed form.
We can, however, write it as a convex quadratic program with linear
inequality constraints. This puts it in the same class of optimization
program as SVMs.

The main idea is to introduce slack variables that allow us to re-write
the `1 norm, which is piecewise linear, as a linear function subject
to linear constraints. In particular, the solution to the LASSO is
exactly the same as the solution to

minimize
θ,u

1

2
‖y −Aθ‖2

2 + λ
d+1∑
i=1

u(i)

subject to − u(i) ≤ θ(i) ≤ u(i), i = 1, . . . , d + 1.

This is the same as solving

minimize
θ,u

1

2
‖y −Aθ‖2

2 + λ
d+1∑
i=1

u(i)

subject to θ − u ≤ 0

− θ − u ≤ 0,
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which is the same as solving

minimize
z∈R2d+2

1

2
zTPz + cTz subject to Rz ≤ 0,

where

z =

[
θ
u

]
, P =

[
ATA 0
0 0

]
, c =

[
−ATy
λ1

]
, R =

[
I −I
−I −I

]
.
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