Regression recap

Recall that in regression we are given training data

$$(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_n,y_n)$$

where $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$

In linear regression we assume that we are trying to estimate a function of the form

$$f(\mathbf{x}) = \boldsymbol{\beta}^T \mathbf{x} + \beta_0$$

where $oldsymbol{eta} \in \mathbb{R}^d$, $eta_0 \in \mathbb{R}$

Least squares regression: Select β , β_0 to minimize

$$SSE(\beta, \beta_0) := \sum_{i=1}^n (y_i - \beta^T \mathbf{x}_i - \beta_0)^2$$

Regularization and regression

Overfitting occurs as the number of features $\,d\,$ begins to approach the number of observations $\,n\,$

In this regime, we have too many degrees of freedom

Idea: penalize candidate solutions for using too many features

One candidate regularizer: $r(\theta) = \|\theta\|_2^2$

$$\widehat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{\theta} \|_2^2 + \lambda \| \boldsymbol{\theta} \|_2^2$$

 $\lambda > 0$ is a "tuning parameter" that controls the tradeoff between fit and complexity

Least squares

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} A = \begin{bmatrix} 1 & x_1(1) & \cdots & x_1(d) \\ 1 & x_2(1) & \cdots & x_2(d) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n(1) & \cdots & x_n(d) \end{bmatrix} \theta = \begin{bmatrix} \beta_0 \\ \beta(1) \\ \vdots \\ \beta(d) \end{bmatrix}$$

$$SSE(\boldsymbol{\theta}) = \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^T \mathbf{x}_i - \beta_0)^2 = \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta}\|_2^2$$

Minimizer given by

$$\widehat{m{ heta}} = \left(m{A}^Tm{A}
ight)^{-1}m{A}^Tm{y}$$

provided that $oldsymbol{A}^Toldsymbol{A}$ is **nonsingular**

Tikhonov regularization

This is one example of a more general technique called *Tikhonov regularization*

$$\widehat{m{ heta}} = rg\min_{m{ heta}} \|m{y} - m{A}m{ heta}\|_2^2 + \|\Gammam{ heta}\|_2^2$$

(Note that λ has been replaced by the matrix Γ)

Solution:

$$\widehat{\theta} = (A^T A + \Gamma^T \Gamma)^{-1} A^T y$$

always well-conditioned

$$\Gamma = \sqrt{\lambda} I$$
 $\widehat{\boldsymbol{\theta}} = \left(\underline{\boldsymbol{A}}^T \boldsymbol{A} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{A}^T \boldsymbol{y}$ for suitable choice of λ .

Ridge regression

In the context of regression, Tikhonov regularization has a special name: *ridge regression*

Ridge regression is essentially exactly what we have been talking about, but in the special case where

$$\Gamma = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda} & 0 & \cdots & 0 \\ 0 & 0 & \sqrt{\lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sqrt{\lambda} \end{bmatrix}$$

We are penalizing all coefficients in β equally, but not penalizing the offset β_0

The LASSO

LASSO

$$\widehat{m{ heta}} = rg \min_{m{ heta}} \|m{y} - m{A}m{ heta}\|_2^2 + \lambda \|m{ heta}\|_1$$

Can also be stated in a constrained form

$$\begin{split} \widehat{\theta} &= \mathop{\arg\min}_{\theta} \| \boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta} \|_2^2 \qquad \widehat{\boldsymbol{\theta}} = \mathop{\arg\min}_{\theta} \| \boldsymbol{\theta} \|_1 \\ \text{s.t.} \quad \| \boldsymbol{\theta} \|_1 &\leq \tau \qquad \qquad \text{s.t.} \quad \| \boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta} \|_2^2 \leq \sigma \end{split}$$

For Tikhonov, we have a closed form solution, but LASSO requires solving an optimization problem

Note: Just like in ridge regression, in practice we may just want to penalize the elements of β (not β_0)

Alternative regularizers

- Akaike information criterion (AIC)
- Bayesian information criterion (BIC)

$$r(\theta) \approx \|\theta\|_0 := |\mathsf{supp}(\theta)|$$

• Least absolute shrinkage and selection operator (LASSO)

$$r(\theta) = \|\theta\|_1 = \sum_j |\theta(j)|$$

- also results in shrinkage, but where all coordinates are shrunk by the same amount (in case of an orthobasis)
- promotes sparsity
- can think of $\| \boldsymbol{\theta} \|_1$ as a more computationally tractable replacement for $\| \boldsymbol{\theta} \|_0$

Sparsity and the LASSO

One can show (see supplemental notes) that if we have a data set of size n, then the solution to the LASSO $\widehat{\theta}$ will have at most n nonzeros (for any possible dataset /A)

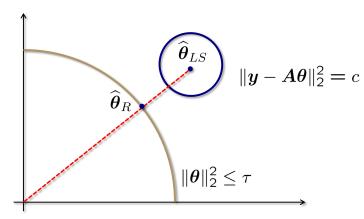
This is a nice property when $n \ll d$, since in this setting we are very susceptible to overfitting

- fewer observations than unknowns
- $oldsymbol{A}$ has nontrivial nullspace
- we can achieve $y=A\theta$, with infinitely many different choices of θ and no obvious way to know which one is best
- limiting the number of nonzeros addresses this problem

In practice, the number of nonzeros is usually much smaller than \boldsymbol{n}

Tikhonov versus least squares

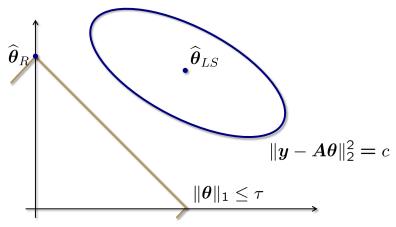
Assume $\Gamma=I$ and that A has orthonormal columns



Tikhonov regularization is equivalent to shrinking the least squares solution towards the origin

Lasso versus least squares

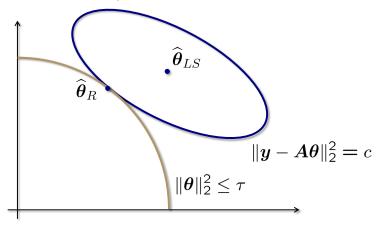
For the LASSO we get something like this...



LASSO still shrinking the least squares solution towards the origin, but now in a way that promotes sparsity

Tikhonov versus least squares

In general, we have this picture



Tikhonov regularization still shrinking the least squares solution towards the origin

A general approach to regression

Least squares, ridge regression, and the LASSO call all be viewed as particular instances of the following general approach to regression

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} L(\theta) + \lambda r(\theta)$$

- $L(m{ heta})$, often called the *loss function*, enforces data fidelity $f_{m{ heta}}(\mathbf{x}_i) pprox y_i$
- $r(\theta)$ is a **regularizer** which serves to quantify the "complexity" of θ

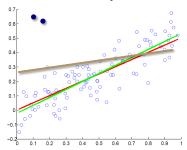
We have seen some examples of regularizers, what about other loss functions?

Outliers in regression

The squared error loss function is sensitive to *outliers*

If $f(\mathbf{x}_i) - y_i$ is small, then $(f(\mathbf{x}_i) - y_i)^2$ is not too large But if $f(\mathbf{x}_i) - y_i$ is big, then $(f(\mathbf{x}_i) - y_i)^2$ is **really** big

Normally this is not a bad property - we want to penalize big errors - but this can make us very sensitive to large outliers



Regularized robust regression

Suppose we combine this loss with an ℓ_2 regularizer

$$\widehat{\boldsymbol{\beta}}, eta_0 = \operatorname*{arg\,min}_{(oldsymbol{eta}, eta_0)} \ \sum_{i=1}^n L_{\epsilon}(y_i - (oldsymbol{eta}^T \mathbf{x}_i + eta_0)) + rac{\lambda}{2} \|oldsymbol{eta}\|_2^2$$

Note that the $\epsilon\text{-insensitive}$ loss has no penalty as long as your prediction is within a "margin" of ϵ

This looks like an SVM...

Robust regression

What else could we do aside from least squares?

Mean absolute error

$$L_{AE}(r) = |r|$$

Huber loss

$$L_H(r) = egin{cases} rac{1}{2}r^2 & ext{if } |r| \leq c \ c|r| - rac{c^2}{2} & ext{if } |r| > c \end{cases}$$

 ϵ -insensitive loss

$$L_{\epsilon}(r) = \begin{cases} 0 & \text{if } |r| \le c \\ |r| - \epsilon & \text{if } |r| > \epsilon \end{cases}$$

Support vector regression

The previous problem can also be cast in the following dual form

$$\min_{\alpha,\alpha^*} \sum_{i} ((\epsilon - y_i)\alpha_i^* + (\epsilon + y_i)\alpha_i) + \frac{1}{2} \sum_{i,j} (\alpha_i^* - \alpha_i)(\alpha_j^* - \alpha_j) \mathbf{x}_j^T \mathbf{x}_i$$

subject to
$$0 \le \alpha_i^*, \alpha_i \le \frac{1}{\lambda}$$

$$\sum_{i} (\alpha_i^* - \alpha_i) = 0$$

$$\alpha_i^*\alpha_i=0$$

The solution has the form $\hat{f}(\mathbf{x}) = \sum_{i} (\hat{\alpha}_{i}^{*} - \hat{\alpha}_{i}) \mathbf{x}_{i}^{T} \mathbf{x} + \beta_{0}$

Can we kernelize regression?

In order to "kernelize" an algorithm, the general approach consists of three main steps:

- 1. Show that the training process only involves the training data via inner products (i.e., $\mathbf{x}_i^T \mathbf{x}_j$)
- 2. Show that applying the decision rule to a new x only involves computing inner products (i.e., $\mathbf{w}^T \mathbf{x}$)
- 3. Replace all inner products with evaluations of the kernel function $k(\cdot, \cdot)$

This approach extends well beyond SVMs

Kernelized LASSO?

Can we kernelize this?

$$\widehat{ heta} = rg \min_{ heta} \|y - A heta\|_2^2 + \lambda \| heta\|_1$$

Not exactly...

Nevertheless, we can assert (with no justification) that

$$\widehat{\boldsymbol{\theta}} = \sum_{i} \alpha_{i} \mathbf{x}_{i}$$

and then replace $\| heta\|_1$ with $\|lpha\|_1$

This yields an algorithm that can be easily kernelized, although it is really something different than the LASSO

- promotes sparsity in α , not θ

Kernel support vector regression

$$\begin{aligned} \min_{\alpha,\alpha^*} & \sum_{i} \left((\epsilon - y_i) \alpha_i^* + (\epsilon + y_i) \alpha_i \right) + \frac{1}{2} \sum_{i,j} (\alpha_i^* - \alpha_i) (\alpha_j^* - \alpha_j) \mathbf{x}_j^T \mathbf{x}_i \\ \text{subject to} & 0 \leq \alpha_i^*, \alpha_i \leq \frac{1}{\lambda} \\ & \sum_{i} (\alpha_i^* - \alpha_i) = 0 \\ & \alpha_i^* \alpha_i = 0 \end{aligned}$$

$$\hat{f}(\mathbf{x}) = \sum_{i} (\hat{\alpha}_i^* - \hat{\alpha}_i) \mathbf{x}_i^T \mathbf{x} + \beta_0$$

Straightforward to kernelize

Ridge regression revisited

Ridge regression: Given $\{(\mathbf{x}_i,y_i)\}_{i=1}^n$, $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R}$

$$(\widehat{\boldsymbol{\beta}}, \widehat{\beta}_0) = \underset{\boldsymbol{\beta}, \beta_0}{\arg\min} \sum_{i=1}^n (y_i - \boldsymbol{\beta}^T \mathbf{x}_i - \beta_0)^2 + \lambda \|\boldsymbol{\beta}\|_2^2$$
Solution:
$$\frac{\partial}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \boldsymbol{\beta}^T \mathbf{x}_i - \beta_0) = 0$$

$$\widehat{\beta}_0 = \frac{1}{n} \sum_{i=1}^n y_i - \widehat{\boldsymbol{\beta}}^T \mathbf{x}_i$$

$$= \bar{y} - \widehat{\boldsymbol{\beta}}^T \bar{\mathbf{x}}$$

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n y_i$$

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n y_i$$

Ridge regression revisited

Plugging this back in we are left to minimize

$$\sum_{i=1}^{n} (y_i - \bar{y} - \beta^T (\mathbf{x}_i - \bar{\mathbf{x}}))^2 + \lambda \|\beta\|_2^2$$

with respect to β

$$\widehat{\boldsymbol{\beta}} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \widetilde{\mathbf{y}}$$

$$\mathbf{A} = egin{bmatrix} (\mathbf{x}_1 - \mathbf{ar{x}})^T \ dots \ (\mathbf{x}_n - \mathbf{ar{x}})^T \end{bmatrix} \qquad \widetilde{\mathbf{y}} = egin{bmatrix} y_1 - ar{y} \ dots \ y_n - ar{y} \end{bmatrix}$$

Woodbury matrix inversion identity

$$(\mathbf{P} + \mathbf{Q}\mathbf{R}\mathbf{S})^{-1} = \mathbf{P}^{-1} - \mathbf{P}^{-1}\mathbf{Q}(\mathbf{R}^{-1} + \mathbf{S}\mathbf{P}^{-1}\mathbf{Q})^{-1}\mathbf{S}\mathbf{P}^{-1}$$

$$\mathbf{P} = \lambda \mathbf{I} \quad \mathbf{Q} = \mathbf{A}^T \quad \mathbf{R} = \mathbf{I} \quad \mathbf{S} = \mathbf{A}$$

$$(\lambda \mathbf{I} + \mathbf{A}^T\mathbf{A})^{-1} = \frac{1}{\lambda}\mathbf{I} - \frac{1}{\lambda}\mathbf{I}\mathbf{A}^T\left(\mathbf{I} + \frac{1}{\lambda}\mathbf{A}\mathbf{A}^T\right)^{-1}\mathbf{A}\frac{1}{\lambda}$$

$$= \frac{1}{\lambda}\left[\mathbf{I} - \mathbf{A}^T(\lambda \mathbf{I} + \mathbf{A}\mathbf{A}^T)^{-1}\mathbf{A}\right]$$

$$(\lambda \mathbf{I} + \mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\widetilde{\mathbf{y}} = \frac{1}{\lambda}\left[\mathbf{A}^T - \mathbf{A}^T(\lambda \mathbf{I} + \mathbf{A}\mathbf{A}^T)^{-1}\mathbf{A}\mathbf{A}^T\right]\widetilde{\mathbf{y}}$$

Kernel ridge regression

$$\widehat{\boldsymbol{\beta}} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \widetilde{\mathbf{y}}$$

$$\mathbf{A} = \begin{bmatrix} (\mathbf{x}_1 - \bar{\mathbf{x}})^T \\ \vdots \\ (\mathbf{x}_n - \bar{\mathbf{x}})^T \end{bmatrix} \qquad \widetilde{\mathbf{y}} = \begin{bmatrix} y_1 - \bar{y} \\ \vdots \\ y_n - \bar{y} \end{bmatrix}$$

$$\widehat{f}(\mathbf{x}) = \bar{y} + \widehat{\boldsymbol{\beta}}^T (\mathbf{x} - \bar{\mathbf{x}})$$

Can we express ridge regression in terms of inner products $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$ and $\langle \mathbf{x}_i, \mathbf{x} \rangle$?

Not immediately. $[A^T A](i,j) \neq \mathbf{x}_i^T \mathbf{x}_j$

Kernelizing ridge regression

$$(\lambda \mathbf{I} + \mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \widetilde{\mathbf{y}} = \frac{1}{\lambda} \left[\mathbf{A}^T - \mathbf{A}^T (\lambda \mathbf{I} + \mathbf{A} \mathbf{A}^T)^{-1} \mathbf{A} \mathbf{A}^T \right] \widetilde{\mathbf{y}}$$

$$K(i, j) = (\mathbf{x}_i - \overline{\mathbf{x}})^T (\mathbf{x}_i - \overline{\mathbf{x}})$$

$$\mathbf{X}(i,j) = (\mathbf{x}_i - \bar{\mathbf{x}})^T (\mathbf{x}_j - \bar{\mathbf{x}})$$

$$= \mathbf{x}_i^T \mathbf{x}_j - \frac{1}{n} \sum_{r=1}^n \mathbf{x}_i^T \mathbf{x}_r - \frac{1}{n} \sum_{s=1}^n \mathbf{x}_s^T \mathbf{x}_j + \frac{1}{n^2} \sum_{r,s=1}^n \mathbf{x}_r^T \mathbf{x}_s$$

$$(\lambda \mathbf{I} + \mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \widetilde{\mathbf{y}} = \frac{1}{\lambda} \left[\mathbf{A}^T - \mathbf{A}^T (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{K} \right] \widetilde{\mathbf{y}}$$

Kernelizing ridge regression

What about the remaining A^T ?

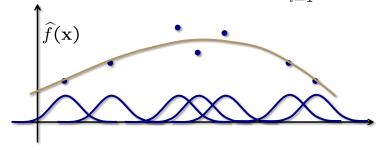
$$\begin{split} \widehat{f}(\mathbf{x}) &= \overline{y} + \widehat{\boldsymbol{\beta}}^T (\mathbf{x} - \overline{\mathbf{x}}) \\ &= \overline{y} + \frac{1}{\lambda} \widetilde{\mathbf{y}}^T \left[\mathbf{A} - \mathbf{K} (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{A} \right] (\mathbf{x} - \overline{\mathbf{x}}) \\ &= \overline{y} + \frac{1}{\lambda} \widetilde{\mathbf{y}}^T \left[\mathbf{I} - \mathbf{K} (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{I} \right] \mathbf{k}(\mathbf{x}) \\ \text{where } \mathbf{k}(\mathbf{x}) &= \begin{bmatrix} (\mathbf{x}_1 - \overline{\mathbf{x}})^T (\mathbf{x} - \overline{\mathbf{x}}) \\ \vdots \\ (\mathbf{x}_n - \overline{\mathbf{x}})^T (\mathbf{x} - \overline{\mathbf{x}}) \end{bmatrix} \end{split}$$

$$[k(\mathbf{x})](i) = \mathbf{x}_i^T \mathbf{x} - \frac{1}{n} \sum_{j=1}^n \mathbf{x}_i^T \mathbf{x}_j - \frac{1}{n} \sum_{j=1}^n \mathbf{x}^T \mathbf{x}_j + \frac{1}{n^2} \sum_{j,k=1}^n \mathbf{x}_j^T \mathbf{x}_k$$

Example: Gaussian kernel

$$k(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{u} - \mathbf{v}\|_2^2}{2\sigma^2}\right)$$

If we omit
$$\beta_0$$
, then $\widehat{f}(\mathbf{x}) = \mathbf{y}^T (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{k}(\mathbf{x})$
$$= \alpha^T \mathbf{k}(\mathbf{x}) = \sum_{i=1}^n \alpha(i) k(\mathbf{x}, \mathbf{x}_i)$$



Homogenous kernel ridge regression

For many kernels, $\Phi(x)$ already contains a constant component, in which case we often omit β_0

- inhomogenous polynomial kernel
- Gaussian kernel does not seem to require a constant

In this case, the kernel ridge regression solution becomes

$$\widehat{f}(\mathbf{x}) = \mathbf{y}^T (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{k}(\mathbf{x})$$
where $\mathbf{y} = \begin{bmatrix} y_1, \cdots, y_n \end{bmatrix}^T$

$$\mathbf{k}(\mathbf{x}) = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}), \cdots, k(\mathbf{x}_n, \mathbf{x}) \end{bmatrix}^T$$

$$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & \cdots & k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}$$

Loss functions and regularization

We have talked about a whole range of algorithms for regression that can be viewed through the lens of minimizing a loss function plus a regularization term

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg\,min}} L(\theta) + \lambda r(\theta)$$

Does this viewpoint also apply to classification?

Regularized logistic regression

Everything we have said so far about least squares regression can be extended to many classification problems

For example, in logistic regression we can replace

$$\min_{\boldsymbol{\theta}} - \ell(\boldsymbol{\theta})$$

with

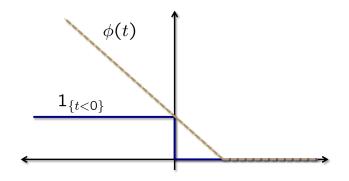
$$\min_{\boldsymbol{\theta}} - \ell(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_2^2$$

Has a similar interpretation to least squares regularization

- makes the Hessian matrix well conditioned
- super useful when the number of observations is small
- · also helpful when data is separable

Hinge loss

Let's take
$$\phi(t) = \max\{0, 1 - t\} =: (1 - t)_+$$



Regularization for linear classification

The kinds of regularization we have talked about can also give us a new way to think about designing linear classifiers

Goal (ideal): Find(\mathbf{w}, b) minimizing

$$\frac{1}{n}\sum_{i=1}^n \mathbb{1}_{\{y_i(\mathbf{w}^T\mathbf{x}_i+b)<0\}}$$

This is actually much harder than it sounds and is not computationally tractable for large problems

Instead, we can consider replacing this with

$$\frac{1}{n} \sum_{i=1}^{n} \phi(y_i(\mathbf{w}^T \mathbf{x}_i + b))$$

where $\phi(t)$ is some upper bound on $\mathbf{1}_{\{t<0\}}$

Adding regularization

Let's try to minimize

$$\frac{1}{n}\sum_{i=1}^{n}(1-y_i(\mathbf{w}^T\mathbf{x}_i+b))_+$$

but to prevent overfitting, let's add a regularization penalty on \mathbf{W}

$$\min_{\mathbf{w},b} \ \frac{1}{n} \sum_{i=1}^{n} (1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))_+ + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

Soft-margin hyperplane

Compare this to the optimization problem we considered previously for the optimal soft-margin hyperplane:

$$\min_{\mathbf{w},b} \ \frac{1}{n} \sum_{i=1}^{n} (1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))_+ + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

VS

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|_2^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$ $i = 1, \dots, n$

$$\xi_i \ge 0 \quad i = 1, \dots, n$$

As you all just showed, these are equivalent!