
Regression recap

Recall that in regression we are given training data

where              and

In linear regression we assume that we are trying to estimate 

a function of the form

where             ,

Least squares regression: Select           to minimize



Least squares

Minimizer given by

provided that           is nonsingular



Regularization and regression

Overfitting occurs as the number of features     begins to 

approach the number of observations      

In this regime, we have too many degrees of freedom

Idea: penalize candidate solutions for using too many features

One candidate regularizer:

is a “tuning parameter” that controls the tradeoff 

between fit and complexity



Tikhonov regularization

This is one example of a more general 

technique called Tikhonov regularization

(Note that     has been replaced by the matrix    )

Solution:

for suitable choice of    ,

always well-conditioned



Ridge regression

In the context of regression, Tikhonov regularization has a 

special name: ridge regression

Ridge regression is essentially exactly what we have been 

talking about, but in the special case where

We are penalizing all coefficients in     equally, but not 

penalizing the offset 



Alternative regularizers

• Akaike information criterion (AIC)

• Bayesian information criterion (BIC)

• Least absolute shrinkage and selection operator (LASSO)

– also results in shrinkage, but where all coordinates are shrunk 

by the same amount (in case of an orthobasis)

– promotes sparsity

– can think of         as a more computationally tractable 

replacement for



The LASSO

LASSO

Can also be stated in a constrained form

For Tikhonov, we have a closed form solution, but LASSO 

requires solving an optimization problem

Note: Just like in ridge regression, in practice we may just 

want to penalize the elements of     (not      )



Sparsity and the LASSO

One can show (see supplemental notes) that if we have a data 

set of size    , then the solution to the LASSO      will have at 

most     nonzeros (for any possible dataset /    )

This is a nice property when            , since in this setting we 

are very susceptible to overfitting

– fewer observations than unknowns 

– has nontrivial nullspace

– we can achieve              , with infinitely many different 

choices of    and no obvious way to know which one is best

– limiting the number of nonzeros addresses this problem

In practice, the number of nonzeros is usually much smaller 

than    



Tikhonov versus least squares

Assume             and that      has orthonormal columns

Tikhonov regularization is equivalent to shrinking the least

squares solution towards the origin 



Tikhonov versus least squares

In general, we have this picture

Tikhonov regularization still shrinking the least squares 

solution towards the origin 



Lasso versus least squares

For the LASSO we get something like this…

LASSO still shrinking the least squares solution towards 

the origin, but now in a way that promotes sparsity 



A general approach to regression

Least squares, ridge regression, and the LASSO call all be 

viewed as particular instances of the following general 

approach to regression

• , often called the loss function, enforces data fidelity

• is a regularizer which serves to quantify the 

“complexity” of 

We have seen some examples of regularizers, what about 

other loss functions?



Outliers in regression

The squared error loss function is sensitive to outliers

If                   is small, then                        is not too large

But if                   is big, then                         is really big

Normally this is not a bad property – we want to penalize big 

errors – but this can make us very sensitive to large outliers



Robust regression

What else could we do aside from least squares?

Mean absolute error

Huber loss

-insensitive loss



Regularized robust regression

Suppose we combine this loss with an      regularizer

Note that the   -insensitive loss has no penalty as long as your 

prediction is within a “margin” of 

This looks like an SVM…



Support vector regression

The previous problem can also be cast in the following dual 

form 

The solution has the form



Can we kernelize regression?

In order to “kernelize” an algorithm, the general approach 

consists of three main steps: 

1. Show that the training process only involves the training 

data via inner products (i.e.,          )

2. Show that applying the decision rule to a new     only 

involves computing inner products (i.e.,         )

3. Replace all inner products with evaluations of the kernel 

function

This approach extends well beyond SVMs



Kernel support vector regression

Straightforward to kernelize



Kernelized LASSO?

Can we kernelize this?

Not exactly…

Nevertheless, we can assert (with no justification) that

and then replace          with

This yields an algorithm that can be easily kernelized, 

although it is really something different than the LASSO

– promotes sparsity in    , not



Ridge regression revisited

Ridge regression: Given                      ,

Solution:   



Ridge regression revisited

Plugging this back in we are left to minimize

with respect to 



Kernel ridge regression

Can we express ridge regression in terms of inner products

and           ? 

Not immediately.    



Woodbury matrix inversion identity



Kernelizing ridge regression



Kernelizing ridge regression

What about the remaining      ?

where                                                



Homogenous kernel ridge regression

For many kernels,           already contains a constant 

component, in which case we often omit

– inhomogenous polynomial kernel

– Gaussian kernel does not seem to require a constant

In this case, the kernel ridge regression solution becomes

where                                                           



Example: Gaussian kernel

If we omit     , then



Loss functions and regularization

We have talked about a whole range of algorithms for 

regression that can be viewed through the lens of minimizing 

a loss function plus a regularization term

Does this viewpoint also apply to classification?



Regularized logistic regression

Everything we have said so far about least squares regression 

can be extended to many classification problems

For example, in logistic regression we can replace

with

Has a similar interpretation to least squares regularization

• makes the Hessian matrix well conditioned

• super useful when the number of observations is small

• also helpful when data is separable



Regularization for linear classification

The kinds of regularization we have talked about can also give 

us a new way to think about designing linear classifiers

Goal (ideal): Find           minimizing

This is actually much harder than it sounds and is not 

computationally tractable for large problems

Instead, we can consider replacing this with

where         is some upper bound on 



Hinge loss

Let’s take



Adding regularization

Let’s try to minimize

but to prevent overfitting, let’s add a regularization penalty 

on      



Soft-margin hyperplane

Compare this to the optimization problem we considered 

previously for the optimal soft-margin hyperplane:

vs

As you all just showed, these are equivalent!


