Project organization

Project proposals due March 16 (~3 weeks)

I would like to make sure everyone has a team, so I want to add a new deadline...

By this Thursday (February 23) please go to the link posted on Piazza and add your team's details to the spreadsheet:

- team members
- tentative project title
- campus(es) where team members are located
- number of team members
- whether you are potentially open to adding more members

Approximation-generalization tradeoff

Given a set \mathcal{H} , find a function $h \in \mathcal{H}$ that minimizes R(h)

Our goal is to find an $h \in \mathcal{H}$ that approximates the Bayes classifier, or some true underlying function

More complex $\mathcal{H} \implies$ better chance of *approximating* the ideal classifier/function

Less complex $\mathcal{H} \implies$ better chance of *generalizing* to new data (out of sample)

Regularization plays a similar role, by biasing us away from complex classifiers/functions

We must carefully limit "complexity" to avoid *overfitting*

Quantifying the tradeoff

VC generalization bound

$$R(h) \lessapprox \widehat{R}_n(h) + \epsilon(\mathcal{H}, n)$$

Alternative approach: Bias-variance decomposition

- **bias:** how well can ${\mathcal H}$ approximate h^*
- *variance:* how well can we pick a good $h \in \mathcal{H}$

$$R(h) = bias + variance$$

Bias-variance decomposition is especially useful because it more easily generalizes to regression

Bias-variance decomposition

In this treatment, we will assume real-valued observations (i.e., regression) and consider the *squared error*

$$\mathcal{D} := \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \} \qquad egin{array}{c} \mathbf{x} \in \mathbb{R}^a \ y \in \mathbb{R} \end{array}$$

 $h^*: \mathbb{R}^d \to \mathbb{R}$: unknown target function

 $h_{\mathcal{D}} : \mathbb{R}^{d} \to \mathbb{R} : \text{function in } \mathcal{H} \text{ we pick using } \mathcal{D}$ $\widehat{R}(h_{\mathcal{D}}) = \widehat{\mathcal{L}} \underbrace{\left\{ \left(h_{\mathcal{D}}(X) - y_{1} \right)^{2} \right\}}_{K(h_{\mathcal{D}})} = \mathbb{E}_{X} \left[\left(h_{\mathcal{D}}(X) - h^{*}(X) \right)^{2} \right] \underbrace{\left(h_{\mathcal{D}}(X) - h^{*}(X) \right)^{2}}_{K(X) \to K} \int \left(h_{\mathcal{D}}(X) - h^{*}(X) \right)^{2} f_{X}(X) dX$

1

Example

$$R(h_{\mathcal{D}}) = \mathbb{E}_X \left[(h_{\mathcal{D}}(X) - h^*(X))^2 \right]$$

Setting up the decomposition

$$R(h_{\mathcal{D}}) = \mathbb{E}_{X} \left[(h_{\mathcal{D}}(X) - h^{*}(X))^{2} \right] \quad \mathcal{J} = h(X)$$

expected error for a given $h_{\mathcal{D}} \in \mathcal{H}$
random (depends on \mathcal{D})

a Stra

$$\mathbb{E}_{\mathcal{D}}[R(h_{\mathcal{D}})] = \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{X}\left[(h_{\mathcal{D}}(X) - h^{*}(X))^{2}\right]\right]$$
$$= \mathbb{E}_{X}\left[\mathbb{E}_{\mathcal{D}}\left[(h_{\mathcal{D}}(X) - h^{*}(X))^{2}\right]\right]$$

let's focus on just this term

The average hypothesis

To evaluate

$$\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X)-h^*(X)\right)^2\right]$$

we define the "average hypothesis"

$$\bar{h}(X) = \mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(X)]$$

Interpretation

Imagine drawing many data sets $\mathcal{D}_1,\ldots,\mathcal{D}_p$

$$\bar{h}(X) \approx \frac{1}{p} \sum_{i=1}^{p} h_{\mathcal{D}_i}(X)$$

Example

Using the average hypothesis

$$\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - h^{*}(X)\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - \bar{h}(X)\right) + \left(\bar{h}(X) - h^{*}(X)\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - \bar{h}(X)\right)^{2} + \left(\bar{h}(X) - h^{*}(X)\right)^{2}\right]$$

$$\rightarrow +2\left(h_{\mathcal{D}}(X) - \bar{h}(X)\right)\left(\bar{h}(X) - h^{*}(X)\right)$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - \bar{h}(X)\right)^{2}\right] + \left(\bar{h}(X) - h^{*}(X)\right)^{2}$$
variance(X) bias(X)

Bias and variance

Plugging this back into our original expression, we get

$$\mathbb{E}_{\mathcal{D}}\left[R(h_{\mathcal{D}})\right] = \mathbb{E}_{X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(X) - h^{*}(X)\right)^{2}\right]\right]$$

 $= \mathbb{E}_X [bias(X) + variance(X)]$

= bias + variance

Visualizing the bias

bias =
$$\mathbb{E}_X \left[\left(\overline{h}(X) - h^*(X) \right)^2 \right]$$

Visualizing the variance

variance =
$$\mathbb{E}_X \left[\mathbb{E}_{\mathcal{D}} \left[\left(h_{\mathcal{D}}(X) - \overline{h}(X) \right)^2 \right] \right]$$

Example: Learning a sine

Suppose $h^*(x) = \sin(\pi x)$ and we get n = 2 training examples

Consider two possible hypothesis sets

- \mathcal{H}_0 : h(x) = b
- \mathcal{H}_1 : h(x) = ax + b

Which one is better?

Approximation

Learning

Average hypothesis for \mathcal{H}_0

Average hypothesis for \mathcal{H}_1

 $E_{x}\left(E_{D}\left(\left(h_{D}(x)-\overline{L}(x)\right)^{2}\right)\right)$ $\overline{h}(x) = \overline{H}_{D}\left(h_{p}(x)\right)$ $H_{0}: (Y_{1}+Y_{2}) \cdot \frac{1}{2} = (\sin(\pi x_{1}) + \sin(\pi x_{2})) \cdot \frac{1}{2} = h_{p}(x)$ $\overline{h}(x) = \overline{H}_{x_{1}, x_{2}}\left(\sin(\pi x_{1}) + \sin(\pi x_{2})\right)$ $= \int_{-1}^{1} \int_{-1}^{1} \frac{1}{4}\left(\sin(\pi x_{1}) + \sin(\pi x_{2})\right) dx,$ $\overline{H}_{x_{1}}\left(\frac{1}{4}\left(\sin(\pi x_{1}) + \sin(\pi x_{2})\right) - 0\right)$

... and the winner is?

$\mathbb{E}_{\mathcal{D}}[R(h_{\mathcal{D}})] = \text{bias} + \text{variance}$

Moral of this story?

VC bound

Keep the "model complexity" small enough compared to n and we can learn $\pmb{any}\ h^*$

Bias-variance decomposition

For any particular h^* , we do best by matching the "model complexity" to the "data resources" (not to h^*)

Balance between

- increasing the model complexity to reduce bias
- decreasing the model complexity to reduce variance

Approximation-generalization tradeoff

"Complexity" of hypothesis set

Approximation-generalization tradeoff

Learning curve - A simple model

Number of data points (n)

Learning curve - A complex model

