
Announcements

• Only 131 people have signed up for a project team
– if you have not signed up, or are on a team of 1, please try 

contacting other folks in the same situation
– if this fails, please email me

• I will hold office hours Wednesday morning 9:00-10:30

• Proposal Deadline extended to March 16!



Dimensionality reduction

We observe data

The goal of dimensionality reduction is to transform these 
inputs to new variables

where             in such a way that minimizes information loss

Dimensionality reductions serves two main purposes:

• Helps (many) algorithms to be more computationally 
efficient

• Helps prevent overfitting (a form of regularization), 
especially when



Curse of dimensionality

As the dimensionality of our feature space grows, the volume 
of the space increases…

A lot…

In learning, this often translates to requiring exponentially 
more data in order for the results to be reliable

Example: With binary features, how much data do we need to 
have at least one example of every possible combination of 
features?



Dimensionality reduction

Broadly speaking, methods for dimensionality reduction can 
be categorized according to:

1. How is “information loss” quantified?

2. Supervised or unsupervised? 
i.e., if labels                  are available, how are they used?

3. Is the map             linear or nonlinear? 

4. Feature selection versus feature extraction? 

vs



Feature selection

Feature selection is the problem of selecting a subset of the 
variables                          that are most relevant for a 
machine learning task (e.g., classification or regression)

Sometimes called subset selection

There are three main reasons why we might want to perform 
feature selection:

• computational efficiency

• regularization

• retains interpretability

Feature selection (and feature extraction) improves 
performance by eliminating irrelevant features



Filter methods

Filter methods attempt to rank features in order of 
importance and then take the top    features

In supervised learning, “importance” is usually related to the 
ability of a feature to predict the label or response variable

Advantage
• simple, fast

Disadvantage
• the    best features are usually not the best    features

The approach to ranking the features will depend on the 
application



Filtering in classification

Consider training data                                     where 
and 

How should we rank the features?



Ranking criteria

Misclassification rate

where    is a classifier that compares the feature         to a 
threshold

Two sample t-test statistic

where              and              are the within-class means for 
feature          and    is the pooled sample standard deviation



Ranking criteria

Margin
If the data is separable, then we can compute

This can be made robust to the non-separable case by 
replacing the hard minimum with an order statistic that 
allows you to ignore some fixed number of outliers



Filtering in linear regression

In linear regression, we have training data
, where            , and we expect    to 

change linearly in response to changes in any

How should we rank the features?



Correlation coefficient

Pick the features which are most correlated with

Set                         where



Mutual information

The mutual information between      and     is

This is the Kullback-Leibler (KL) divergence between the joint 
distribution             and the product of the marginal 
distributions

Note that                         if      are      independent

You can intuitively think of                 as a measure of “how 
much knowing      tells us about     ”



Maximizing mutual information

If           denotes a subset of features corresponding to
, then ideally we would like to maximize 

over all possible     of a desired size

Unfortunately, this is typically intractable

Instead we could rank the features according to

where the mutual information is estimated by first computing 
histograms or some other estimate of             and



Incremental maximization

This is a legitimate strategy, but (just like the other methods 
we have discussed) it can lead to selecting highly redundant 
features

With mutual information, there is a natural way to deal with 
this redundancy by selecting features incrementally

For example, say that we have already selected features 
and wish to select one more

Choose            to maximize



Alternatives to filtering

A big drawback to the filtering approach is that it usually 
doesn’t capture interactions between features

Can result in selecting redundant features

Wrapper methods are an alternative with three ingredients:

1. a machine learning algorithm

2. a way to assess the performance of a subset of features

3. a strategy for searching through subsets of features

Advantage
• captures feature interactions where filter methods do not

Disadvantage
• can be slow



Examples

1. LR, SVM, nearest neighbors, least squares, …

2. holdout error, cross validation, bootstrap, …

3. Forward selection
– start with no features

– try adding each one, one at a time

– pick the best, and then repeat

Backward elimination
– start with all features

– try removing each one, one at a time

– remove the worst, and then repeat

Many, many others (see “greedy algorithms for sparse 
recovery” for hundreds of examples)



Embedded methods

Embedded methods jointly perform feature selection and 
model fitting instead of dividing these into two separate 
processes

The idea is to simultaneously learn a classifier or regression 
function that does well on the training data while only using a 
small number of features

Prime examples:
• LASSO
• Any other learning algorithm that uses    -norm 

regularization



Feature extraction

In general, there may not be a small subset of features that 
works well

Examples
• speech
• images
• almost any sampled signal

How can we design a good mapping              that minimizes 
the loss of information using only the data we are given?

We will approach this from an unsupervised perspective



Principal component analysis (PCA)

• Unsupervised

• Linear

• Loss criteria: Sum of squared errors

The idea behind PCA is to find an approximation

where

•
• with orthonormal columns

•



Example

From Chapter 14 of Hastie, Tibshirani, and Friedman



Derivation of PCA

Mathematically, we can define          and                   as the 
solution to 

The hard part of this problem is finding       

Given    , it is relatively easy to show that



Determining as

Suppose          are fixed.  We wish to minimize

Claim: We must have 

Why?

Determining     is just standard least-squares regression



Determining as

Setting                                and still supposing     is fixed, our 
problem reduces to minimizing



Determining as

Taking the gradient with respect to     and setting this equal 
to zero, we obtain

The choice of     is not unique, but the easy (and standard) 
way to ensure this equality holds is to set 



Determining as

It remains to minimize

with respect to 

For convenience, we will assume that            , since 
otherwise we could just substitute

In this case the problem reduces to minimizing   



Determining as

Expanding this out, we obtain

Thus, we can instead focus on maximizing 



Determining as

Note that for any vector   , we have

Thus, we can write 

is a scaled version of the empirical 
covariance matrix, sometimes called the scatter matrix



Determining as

The problem of determining     reduces to the optimization 
problem

Analytically deriving the optimal      is not too hard, but is a 
bit more involved than you might initially expect 
(especially if you already know the answer)

We will provide justification for the solution for the           
case – the general case is proven in the supplementary notes   



One-dimensional example

Consider the optimization problem

Form the Lagrangian

Take the gradient and set it equal to zero

Take     to be the eigenvector of     corresponding to the 
maximal eigenvalue

must be an eigenvector of 



The general case

For general values of   , the solution is obtained by computing 
the eigendecomposition of    :

where     is an orthonormal matrix with columns                
and 

where 



The general case

The optimal choice of      in this case is given by

i.e., take the top     eigenvectors of   

Terminology

• principal component transform:

• principal component: 

• principal eigenvector: 


