
Derivation of Principal Components Analysis

Given a set of data points x1, . . . ,xn ∈ Rd, we want to find the linear
subspace (plus an affine offset) that is the best fit in the least-squares
sense. Mathematically, we want to solve

minimize
µ,A,{θi}

n∑
i=1

‖xi − µ−Aθi‖22, subject to ATA = I,

where µ ∈ Rd,θi ∈ Rk, and A is a n × k matrix; the constraint
ATA = I means that we will considerA with orthonormal columns.

Minimizing the expression above over the {θi} and µ is straightfor-
ward. For the {θi}, suppose that A and µ are fixed. Then we have
a series of n decoupled least-squares problems: for i = 1, . . . , n, we
solve

minimize
θi

‖xi − µ−Aθi‖22

This is a standard unconstrained least-squares problem that has so-
lution

θ̂i = (ATA)−1AT(xi − µ) = AT(xi − µ),

where the second equality follows fromATA = I. WithA still fixed,
we solve for µ by plugging in our expression for the θi:

minimize
µ

n∑
i=1

‖xi − µ−AAT(xi − µ)‖22,

=
n∑

i=1

‖(I−AAT)(xi − µ)‖22,

=
n∑

i=1

(xi − µ)T(I−AAT)(xi − µ),
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where the last step comes from expanding out the norm squared as
an inner product, and using the fact that (I−AAT) is a projector;
it is symmetric, and (I−AAT)2 = (I−AAT). Taking the gradient
of the expression above and setting it to zero means that µ̂ will obey

0 = −2
n∑

i=1

(I−AAT)(xi − µ̂)

= −2(I−AAT)

(
n∑

i=1

xi − nµ̂
)
.

This can be satisfied by taking

µ̂ =
1

n

n∑
i=1

xi.

Note that this is not the only choice for µ — any choice that puts∑
ixi − nµ into the column space of A will work. But the choice

above is intuitive, so we will go with it.

With {θ̂i} and µ̂ solved for, we now optimize over A. We want to
solve

minimize
A∈Rn×k

n∑
i=1

‖xi − µ̂−AAT(xi − µ̂)‖22 subject to ATA = I.

We will assume, without loss of generality, that µ̂ = 0, as we could
simply use the variable substitution x̃i = xi−µ̂ above. The program
becomes

minimize
A∈Rn×k

n∑
i=1

‖(I−AAT)xi‖22 subject to ATA = I.
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Expanding the functional, and again using the fact that (I−AAT)
is a projector,

n∑
i=1

‖(I−AAT)xi‖22 =
n∑

i=1

xT
i (I−AAT)xi

=
n∑

i=1

xT
i xi − xT

i AA
Txi.

The first term does not depend on A, and the second term is always
negative, so our problem is equivalent to

maximize
A∈Rn×k

n∑
i=1

xT
i AA

Txi subject to ATA = I.

For any vector v, it is easy to see that ‖v‖22 = trace(vvT). Thus,
the objective function above can also be written as

n∑
i=1

xT
i AA

Txi =
n∑

i=1

‖ATxi‖22

=
n∑

i=1

trace(ATxix
T
i A)

= trace

(
AT

(
n∑

i=1

xix
T
i

)
A

)
= trace(ATSA),

where S =
∑n

i=1xix
T
i is a scaled version of the sample covariance

matrix.

By construction, S is symmetric positive semi-definite, so it has
eigenvalue decomposition

S = UΛUT,
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where U is a d × d orthonormal matrix, UTU = UUT = I, and
Λ = diag({λi}), with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. Then

trace(ATSA) = trace(ATUΛUTA) = trace(W TΛW ),

where W = UTA. Notice that W also has orthonormal columns,
as W TW = ATUUTA = ATA = I. So we can solve the program

maximize
W∈Rn×k

trace(W TΛW ) subject to W TW = I,

and then take Â = UTŴ .

We can show that the last maximization program above is equivalent
to a simple linear program that we can solve by inspection. Let
w1, . . . ,wk be the columns of W . Then

trace(W TΛW ) =
k∑

i=1

wT
i Λwi

=
k∑

i=1

d∑
j=1

wi(j)
2λj

=
d∑

j=1

hjλj, hj =
k∑

i=1

wi(j)
2 =

k∑
i=1

W (i, j)2.

The hj, j = 1, . . . , d above are the sums of the squares of the rows
of W . It is clear that hj ≥ 0. It is also true that

d∑
j=1

hj = k,

as the fact that the norm of each columns of W is 1 means that
d∑

j=1

k∑
i=1

W (i, j)2 =
k∑

i=1

(
d∑

j=1

W (i, j)2
)

=
k∑

i=1

1 = k.
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Finally, it is also true that hj ≤ 1. Here is why: since the columns of
W are orthonormal, they can be considered as part of an orthonor-
mal basis for all of Rd. That is, there is a (and actually there are
many) d× (d− k) matrix W 0 such that the columns of

W ′ =
[
W W 0

]
form an orthonormal basis for Rd. Since W ′ is square, W ′W

′T = I,
meaning the sum of the squares of each row are equal to 1. Thus

hj =
k∑

i=1

W (i, j)2 ≤
d∑

i=1

W ′(i, j)2 = 1.

With these constraints on the hj, let’s see how large we can make
the quantity of interest:

maximize
h∈Rd

d∑
j=1

hjλj subject to
d∑

j=1

hj = k, 0 ≤ hj ≤ 1.

This is a linear program, but we can intuit the answer. Since all of the
λj are positive, we want to have their weights (i.e., the hj) as large
as possible for the largest entries. Since the weights are constrained
to be less than 1, and their sum is k, this simply means we assign a
weight of 1 to the k largest terms, and 0 to the others:

ĥj =

{
1, j = 1, . . . , k,

0, otherwise.

This means that the sum of the squares of the entries in the rows of
the corresponding Ŵ are 1 for the first k, and zero below — there
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are many matrices with orthonormal columns which fit the bill, but
a specific one which does is

Ŵ =

[
Ik×k

0(d−k)×k

]
. (1)

Taking Â = UTŴ , this results in

Â =
[
u1 u2 · · · uk

]
,

where the ui above are the first k columns of U .

PCA Theorem

minimize
µ,A,{θi}

n∑
i=1

‖xi − µ−Aθi‖22, subject to ATA = I,

has solution

µ̂ =
1

n

n∑
i=1

xi, Â =
[
u1 · · · uk

]
, θ̂i = Â

T
(xi − µ̂),

where u1, . . . ,uk are the eigenvectors corresponding to the k
largest eigenvalues of

S =
n∑

i=1

xix
T
i .

Note that our analysis above shows that the choice ofA is not unique
— we are really choosing the subspace spanned by the columns of
A, and do not care which orthobasis we use to span it. In the end,
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taking Â
′

= ÂQ, for any k × k orthonormal matrix Q would also
work, as

Â
′
Â
′T

= ÂQQTÂ
T

= ÂÂ
T
.

In our choice for Ŵ in (1) above, we would take

Ŵ =

[
Q

0(d−k)×k

]
,

which also meets the constraints dictated by the ĥj — the sum of
the squares of the entries in the rows if 1 for the first k, zero for the
last d− k, and the columns are orthonormal.
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