Derivation of Principal Components Analysis

Given a set of data points &, . . . , &, € R?, we want to find the lincar
subspace (plus an affine offset) that is the best fit in the least-squares
sense. Mathematically, we want to solve

minimize x;, — pu— AB;|%, subject to ATA =1,
inguie 32—~ A, suby

where p € R% 0, € R*, and A is a n x k matrix; the constraint
AT A = T means that we will consider A with orthonormal columns.

Minimizing the expression above over the {8;} and p is straightfor-
ward. For the {6;}, suppose that A and p are fixed. Then we have
a series of n decoupled least-squares problems: for : = 1,...,n, we
solve

min‘igmize |z, — p — A3

This is a standard unconstrained least-squares problem that has so-
lution

0, =(A"A) Az, — p) = A%z — p),

where the second equality follows from A" A = I. With A still fixed,
we solve for p by plugging in our expression for the 6;:

minimize Z |z, — p— AA  (; — )5,
a i=1

_ En: |(I—AAY) (z: — p)|,

1=1
n

= Z(fﬂi - N)T(I - AAT)(-’I% — ),

1=1
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where the last step comes from expanding out the norm squared as
an inner product, and using the fact that (I — AA") is a projector;
it is symmetric, and (I — AA")?> = (I— AA"). Taking the gradient
of the expression above and setting it to zero means that g will obey

0- 23 (1- AA") (@~

1=1
—2(I-AA") (Z T; — nﬁ) .
=1

This can be satisfied by taking
- Z
=~ 2

Note that this is not the only choice for ¢ — any choice that puts
>, x; — np into the column space of A will work. But the choice
above is intuitive, so we will go with it.

With {@Z} and p solved for, we now optimize over A. We want to
solve

AcRnxk

minimize Z |z, — i — AA (x; — f)||? subject to A"A =1.

We will assume, without loss of generality, that gt = 0, as we could
simply use the variable substitution &; = a&; — i above. The program
becomes

minimize Z |(I— AA )x;||? subjectto A'A =1
=1

A€ERnxk
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Expanding the functional, and again using the fact that (I — AA")
Is a projector,

D II-AANz |3 =) =/(1- AA )z,

n
T
= g x'x, —x AA" x;.
i=1

The first term does not depend on A, and the second term is always
negative, so our problem is equivalent to

n
.. T . T
maximize x! AA'xz; subjectto A'A=1.
AeRnXk
i=1

For any vector v, it is easy to see that ||v]|3 = trace(vv?’). Thus,
the objective function above can also be written as

n n
Z .’IZZ-TAAT.’BZ- = Z HAT:BZHS
=1 1=1

= Z trace( A'xz;xl A)
i=1

= trace (AT (Z :1:41:?) A)
=1

— trace(A'SA),
where S = Y7 @;x! is a scaled version of the sample covariance

matrix.

By construction, S is symmetric positive semi-definite, so it has
eigenvalue decomposition

S=UAU",
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where U is a d x d orthonormal matrix, U'U = UU" = I, and

trace(A'SA) = trace(A'UAU " A) = trace(W ' AW),

where W = U"' A. Notice that W also has orthonormal columns,
as W'W = A'UU"A = A" A = 1. So we can solve the program

maximize trace(W' 'AW) subject to W'W =1,

WeRnXk’

and then take A = UTﬁ\/.

We can show that the last maximization program above is equivalent
to a simple linear program that we can solve by inspection. Let
wy, ..., w; be the columns of W. Then

trace(W ' AW) ZwTAw

= Z Z wi(j>2>‘

i=1 j=1
d k k
= Z hiAj,  h; = ZWU)Q = Z W<7:7j)2
j=1 i=1 i=1
The h;, j =1,...,d above are the sums of the squares of the rows

of W. It is clear that h; > 0. It is also true that

d
> hi=

j=1

as the fact that the norm of each columns of W is 1 means that

DO W)= (Z W(z’,j)2> =) 1=k

j=1 i=1 i=1 \j=1 i=1
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Finally, it is also true that A; < 1. Here is why: since the columns of
W are orthonormal, they can be considered as part of an orthonor-
mal basis for all of R?. That is, there is a (and actually there are
many) d X (d — k) matrix W such that the columns of

W' = [W W,

form an orthonormal basis for R?. Since W is square, WwWT = I
meaning the sum of the squares of each row are equal to 1. Thus

k d
hy =Y Wi, ) <> W5 =1
1=1 =1

With these constraints on the h;, let’s see how large we can make
the quantity of interest:

d

d
mazcei%}ize 2 h;\; subject to z; hj=Fk, 0<h; <Ll
J= J=

This is a linear program, but we can intuit the answer. Since all of the
A; are positive, we want to have their weights (i.e., the h;) as large
as possible for the largest entries. Since the weights are constrained
to be less than 1, and their sum is £, this simply means we assign a
weight of 1 to the k largest terms, and 0 to the others:

~ 1, j=1,...,k,
h‘]:{o

otherwise.

This means that the sum of the squares of the entries in the rows of
the corresponding W are 1 for the first k, and zero below — there
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are many matrices with orthonormal columns which fit the bill, but
a specific one which does is

- Ikxk
W = ) 1
[(’(dk)xk] 1)

Taking A=U Tﬁ\/, this results in

A=u uy - uy,

where the u; above are the first k columns of U.

PCA Theorem

minimize x;, — pu— A0;|%, subject to ATA =1,
injrie 3 o~ — A, suby

has solution

Z u; - uk‘}) /éZ:A(wl_ﬁ’)a

1
n

where wq,...,u;, are the eigenvectors corresponding to the k
largest eigenvalues of

n
§ T
1=1

Note that our analysis above shows that the choice of A is not unique
— we are really choosing the subspace spanned by the columns of
A, and do not care which orthobasis we use to span it. In the end,
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taking A = EQ, for any k x k orthonormal matrix @ would also
work, as

AA =AQQTA = AA".
In our choice for W in (1) above, we would take

W:[()(Q ]

d—k)xk

which also meets the constraints dictated by the /f\Lj — the sum of
the squares of the entries in the rows if 1 for the first k, zero for the
last d — k, and the columns are orthonormal.
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