Derivation of Principal Components Analysis

Given a set of data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$, we want to find the linear subspace (plus an affine offset) that is the best fit in the least-squares sense. Mathematically, we want to solve

$$
\underset{\boldsymbol{\mu}, \boldsymbol{A},\left\{\boldsymbol{\theta}_{i}\right\}}{\operatorname{minimize}} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}-\boldsymbol{A} \boldsymbol{\theta}_{i}\right\|_{2}^{2}, \quad \text { subject to } \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\mathbf{I}
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{d}, \boldsymbol{\theta}_{i} \in \mathbb{R}^{k}$, and \boldsymbol{A} is a $n \times k$ matrix; the constraint $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\mathbf{I}$ means that we will consider \boldsymbol{A} with orthonormal columns.

Minimizing the expression above over the $\left\{\boldsymbol{\theta}_{i}\right\}$ and $\boldsymbol{\mu}$ is straightforward. For the $\left\{\boldsymbol{\theta}_{i}\right\}$, suppose that \boldsymbol{A} and $\boldsymbol{\mu}$ are fixed. Then we have a series of n decoupled least-squares problems: for $i=1, \ldots, n$, we solve

$$
\underset{\boldsymbol{\theta}_{i}}{\operatorname{minimize}}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}-\boldsymbol{A} \boldsymbol{\theta}_{i}\right\|_{2}^{2}
$$

This is a standard unconstrained least-squares problem that has solution

$$
\widehat{\boldsymbol{\theta}}_{i}=\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)=\boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right),
$$

where the second equality follows from $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\mathbf{I}$. With \boldsymbol{A} still fixed, we solve for $\boldsymbol{\mu}$ by plugging in our expression for the $\boldsymbol{\theta}_{i}$:

$$
\begin{aligned}
\underset{\mu}{\operatorname{minimize}} & \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\right\|_{2}^{2} \\
= & \sum_{i=1}^{n}\left\|\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\right\|_{2}^{2} \\
= & \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\mathrm{T}}\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)
\end{aligned}
$$

where the last step comes from expanding out the norm squared as an inner product, and using the fact that $\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)$ is a projector; it is symmetric, and $\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)^{2}=\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)$. Taking the gradient of the expression above and setting it to zero means that $\widehat{\boldsymbol{\mu}}$ will obey

$$
\begin{aligned}
\mathbf{0} & =-2 \sum_{i=1}^{n}\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)\left(\boldsymbol{x}_{i}-\widehat{\boldsymbol{\mu}}\right) \\
& =-2\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}-n \widehat{\boldsymbol{\mu}}\right) .
\end{aligned}
$$

This can be satisfied by taking

$$
\widehat{\boldsymbol{\mu}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}
$$

Note that this is not the only choice for $\boldsymbol{\mu}$ - any choice that puts $\sum_{i} \boldsymbol{x}_{i}-n \boldsymbol{\mu}$ into the column space of \boldsymbol{A} will work. But the choice above is intuitive, so we will go with it.

With $\left\{\widehat{\boldsymbol{\theta}}_{i}\right\}$ and $\widehat{\boldsymbol{\mu}}$ solved for, we now optimize over \boldsymbol{A}. We want to solve

$$
\underset{\boldsymbol{A} \in \mathbb{R}^{n \times k}}{\operatorname{minimize}} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\widehat{\boldsymbol{\mu}}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{x}_{i}-\widehat{\boldsymbol{\mu}}\right)\right\|_{2}^{2} \quad \text { subject to } \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\mathbf{I} .
$$

We will assume, without loss of generality, that $\widehat{\boldsymbol{\mu}}=\mathbf{0}$, as we could simply use the variable substitution $\widetilde{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\widehat{\boldsymbol{\mu}}$ above. The program becomes

$$
\underset{\boldsymbol{A} \in \mathbb{R}^{n \times k}}{\operatorname{minimize}} \sum_{i=1}^{n}\left\|\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right) \boldsymbol{x}_{i}\right\|_{2}^{2} \quad \text { subject to } \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\mathbf{I} .
$$

Expanding the functional, and again using the fact that $\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)$ is a projector,

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right) \boldsymbol{x}_{i}\right\|_{2}^{2} & =\sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathrm{T}}\left(\mathbf{I}-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right) \boldsymbol{x}_{i} \\
& =\sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{x}_{i}-\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i}
\end{aligned}
$$

The first term does not depend on \boldsymbol{A}, and the second term is always negative, so our problem is equivalent to

$$
\underset{\boldsymbol{A} \in \mathbb{R}^{n \times k}}{\operatorname{maximize}} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i} \quad \text { subject to } \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\mathbf{I} .
$$

For any vector \boldsymbol{v}, it is easy to see that $\|\boldsymbol{v}\|_{2}^{2}=\operatorname{trace}\left(\boldsymbol{v} \boldsymbol{v}^{\mathrm{T}}\right)$. Thus, the objective function above can also be written as

$$
\begin{aligned}
\sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i} & =\sum_{i=1}^{n}\left\|\boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i}\right\|_{2}^{2} \\
& =\sum_{i=1}^{n} \operatorname{trace}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{A}\right) \\
& =\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{T}}\left(\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}}\right) \boldsymbol{A}\right) \\
& =\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{A}\right)
\end{aligned}
$$

where $\boldsymbol{S}=\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}}$ is a scaled version of the sample covariance matrix.

By construction, \boldsymbol{S} is symmetric positive semi-definite, so it has eigenvalue decomposition

$$
\boldsymbol{S}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathrm{T}}
$$

where \boldsymbol{U} is a $d \times d$ orthonormal matrix, $\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=\boldsymbol{U} \boldsymbol{U}^{\mathrm{T}}=\mathbf{I}$, and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\left\{\lambda_{i}\right\}\right)$, with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \geq 0$. Then

$$
\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{A}\right)=\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{A}\right)=\operatorname{trace}\left(\boldsymbol{W}^{\mathrm{T}} \boldsymbol{\Lambda} \boldsymbol{W}\right),
$$

where $\boldsymbol{W}=\boldsymbol{U}^{\mathrm{T}} \boldsymbol{A}$. Notice that \boldsymbol{W} also has orthonormal columns, as $\boldsymbol{W}^{\mathrm{T}} \boldsymbol{W}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{A}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\mathbf{I}$. So we can solve the program $\underset{\boldsymbol{W} \in \mathbb{R}^{n \times k}}{\operatorname{maximize}} \operatorname{trace}\left(\boldsymbol{W}^{\mathrm{T}} \boldsymbol{\Lambda} \boldsymbol{W}\right)$ subject to $\boldsymbol{W}^{\mathrm{T}} \boldsymbol{W}=\mathbf{I}$, and then take $\widehat{\boldsymbol{A}}=\boldsymbol{U}^{\mathrm{T}} \widehat{\boldsymbol{W}}$.

We can show that the last maximization program above is equivalent to a simple linear program that we can solve by inspection. Let $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}$ be the columns of \boldsymbol{W}. Then

$$
\begin{aligned}
\operatorname{trace}\left(\boldsymbol{W}^{\mathrm{T}} \boldsymbol{\Lambda} \boldsymbol{W}\right) & =\sum_{i=1}^{k} \boldsymbol{w}_{i}^{\mathrm{T}} \boldsymbol{\Lambda} \boldsymbol{w}_{i} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{d} w_{i}(j)^{2} \lambda_{j} \\
& =\sum_{j=1}^{d} h_{j} \lambda_{j}, \quad h_{j}=\sum_{i=1}^{k} w_{i}(j)^{2}=\sum_{i=1}^{k} W(i, j)^{2}
\end{aligned}
$$

The $h_{j}, j=1, \ldots, d$ above are the sums of the squares of the rows of \boldsymbol{W}. It is clear that $h_{j} \geq 0$. It is also true that

$$
\sum_{j=1}^{d} h_{j}=k
$$

as the fact that the norm of each columns of \boldsymbol{W} is 1 means that

$$
\sum_{j=1}^{d} \sum_{i=1}^{k} W(i, j)^{2}=\sum_{i=1}^{k}\left(\sum_{j=1}^{d} W(i, j)^{2}\right)=\sum_{i=1}^{k} 1=k
$$

Finally, it is also true that $h_{j} \leq 1$. Here is why: since the columns of \boldsymbol{W} are orthonormal, they can be considered as part of an orthonormal basis for all of \mathbb{R}^{d}. That is, there is a (and actually there are many) $d \times(d-k)$ matrix \boldsymbol{W}_{0} such that the columns of

$$
\boldsymbol{W}^{\prime}=\left[\begin{array}{ll}
\boldsymbol{W} & \boldsymbol{W}_{0}
\end{array}\right]
$$

form an orthonormal basis for \mathbb{R}^{d}. Since \boldsymbol{W}^{\prime} is square, $\boldsymbol{W}^{\prime} \boldsymbol{W}^{\prime \mathrm{T}}=\mathbf{I}$, meaning the sum of the squares of each row are equal to 1 . Thus

$$
h_{j}=\sum_{i=1}^{k} W(i, j)^{2} \leq \sum_{i=1}^{d} W^{\prime}(i, j)^{2}=1
$$

With these constraints on the h_{j}, let's see how large we can make the quantity of interest:

$$
\underset{h \in \mathbb{R}^{d}}{\operatorname{maximize}} \sum_{j=1}^{d} h_{j} \lambda_{j} \quad \text { subject to } \quad \sum_{j=1}^{d} h_{j}=k, \quad 0 \leq h_{j} \leq 1
$$

This is a linear program, but we can intuit the answer. Since all of the λ_{j} are positive, we want to have their weights (i.e., the h_{j}) as large as possible for the largest entries. Since the weights are constrained to be less than 1 , and their sum is k, this simply means we assign a weight of 1 to the k largest terms, and 0 to the others:

$$
\widehat{h}_{j}= \begin{cases}1, & j=1, \ldots, k \\ 0, & \text { otherwise }\end{cases}
$$

This means that the sum of the squares of the entries in the rows of the corresponding $\widehat{\boldsymbol{W}}$ are 1 for the first k, and zero below - there
are many matrices with orthonormal columns which fit the bill, but a specific one which does is

$$
\widehat{\boldsymbol{W}}=\left[\begin{array}{c}
\mathbf{I}_{k \times k} \tag{1}\\
\mathbf{0}_{(d-k) \times k}
\end{array}\right] .
$$

Taking $\widehat{\boldsymbol{A}}=\boldsymbol{U}^{\mathrm{T}} \widehat{\boldsymbol{W}}$, this results in

$$
\widehat{\boldsymbol{A}}=\left[\begin{array}{llll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{k}
\end{array}\right],
$$

where the \boldsymbol{u}_{i} above are the first k columns of \boldsymbol{U}.

PCA Theorem

$$
\underset{\boldsymbol{\mu}, \boldsymbol{A},\left\{\boldsymbol{\theta}_{i}\right\}}{\operatorname{minimize}} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}-\boldsymbol{A} \boldsymbol{\theta}_{i}\right\|_{2}^{2}, \quad \text { subject to } \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\mathbf{I}
$$

has solution

$$
\widehat{\boldsymbol{\mu}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}, \quad \widehat{\boldsymbol{A}}=\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \cdots & \boldsymbol{u}_{k}
\end{array}\right], \quad \widehat{\boldsymbol{\theta}}_{i}=\widehat{\boldsymbol{A}}^{\mathrm{T}}\left(\boldsymbol{x}_{i}-\widehat{\boldsymbol{\mu}}\right),
$$

where $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ are the eigenvectors corresponding to the k largest eigenvalues of

$$
\boldsymbol{S}=\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}} .
$$

Note that our analysis above shows that the choice of \boldsymbol{A} is not unique - we are really choosing the subspace spanned by the columns of \boldsymbol{A}, and do not care which orthobasis we use to span it. In the end,
taking $\widehat{\boldsymbol{A}}^{\prime}=\widehat{\boldsymbol{A}} \boldsymbol{Q}$, for any $k \times k$ orthonormal matrix \boldsymbol{Q} would also work, as

$$
\widehat{\boldsymbol{A}}^{\prime} \hat{\boldsymbol{A}}^{\mathrm{T}}=\widehat{\boldsymbol{A}} \boldsymbol{Q} \boldsymbol{Q}^{\mathrm{T}} \hat{\boldsymbol{A}}^{\mathrm{T}}=\widehat{\boldsymbol{A}} \hat{\boldsymbol{A}}^{\mathrm{T}}
$$

In our choice for $\widehat{\boldsymbol{W}}$ in (1) above, we would take

$$
\widehat{\boldsymbol{W}}=\left[\begin{array}{c}
\boldsymbol{Q} \\
\mathbf{0}_{(d-k) \times k}
\end{array}\right],
$$

which also meets the constraints dictated by the \widehat{h}_{j} - the sum of the squares of the entries in the rows if 1 for the first k, zero for the last $d-k$, and the columns are orthonormal.

