Derivation of Principal Components Analysis

Given a set of data points $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d$, we want to find the linear subspace (plus an affine offset) that is the best fit in the least-squares sense. Mathematically, we want to solve

$$\underset{\boldsymbol{\mu}, \boldsymbol{A}, \{\boldsymbol{\theta}_i\}}{\text{minimize}} \quad \sum_{i=1}^n \|\boldsymbol{x}_i - \boldsymbol{\mu} - \boldsymbol{A}\boldsymbol{\theta}_i\|_2^2, \quad \text{subject to } \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \mathbf{I},$$

where $\boldsymbol{\mu} \in \mathbb{R}^d, \boldsymbol{\theta}_i \in \mathbb{R}^k$, and \boldsymbol{A} is a $n \times k$ matrix; the constraint $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \mathbf{I}$ means that we will consider \boldsymbol{A} with orthonormal columns.

Minimizing the expression above over the $\{\boldsymbol{\theta}_i\}$ and $\boldsymbol{\mu}$ is straightforward. For the $\{\boldsymbol{\theta}_i\}$, suppose that \boldsymbol{A} and $\boldsymbol{\mu}$ are fixed. Then we have a series of n decoupled least-squares problems: for $i = 1, \ldots, n$, we solve

$$\underset{\boldsymbol{\theta}_i}{\text{minimize}} \|\boldsymbol{x}_i - \boldsymbol{\mu} - \boldsymbol{A}\boldsymbol{\theta}_i\|_2^2$$

This is a standard unconstrained least-squares problem that has solution

$$\widehat{\boldsymbol{\theta}}_i = (\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{x}_i - \boldsymbol{\mu}) = \boldsymbol{A}^{\mathrm{T}}(\boldsymbol{x}_i - \boldsymbol{\mu}),$$

where the second equality follows from $A^{T}A = I$. With A still fixed, we solve for μ by plugging in our expression for the θ_i :

$$\begin{array}{l} \underset{\boldsymbol{\mu}}{\operatorname{minimize}} & \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \boldsymbol{\mu} - \boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{x}_{i} - \boldsymbol{\mu})\|_{2}^{2}, \\ & = & \sum_{i=1}^{n} \|(\mathbf{I} - \boldsymbol{A}\boldsymbol{A}^{\mathrm{T}})(\boldsymbol{x}_{i} - \boldsymbol{\mu})\|_{2}^{2}, \\ & = & \sum_{i=1}^{n} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\mathrm{T}}(\mathbf{I} - \boldsymbol{A}\boldsymbol{A}^{\mathrm{T}})(\boldsymbol{x}_{i} - \boldsymbol{\mu}), \end{array}$$

where the last step comes from expanding out the norm squared as an inner product, and using the fact that $(\mathbf{I} - \mathbf{A}\mathbf{A}^{\mathrm{T}})$ is a projector; it is symmetric, and $(\mathbf{I} - \mathbf{A}\mathbf{A}^{\mathrm{T}})^2 = (\mathbf{I} - \mathbf{A}\mathbf{A}^{\mathrm{T}})$. Taking the gradient of the expression above and setting it to zero means that $\hat{\boldsymbol{\mu}}$ will obey

$$\mathbf{0} = -2\sum_{i=1}^{n} (\mathbf{I} - \mathbf{A}\mathbf{A}^{\mathrm{T}})(\mathbf{x}_{i} - \widehat{\boldsymbol{\mu}})$$
$$= -2(\mathbf{I} - \mathbf{A}\mathbf{A}^{\mathrm{T}})\left(\sum_{i=1}^{n} \mathbf{x}_{i} - n\widehat{\boldsymbol{\mu}}\right)$$

This can be satisfied by taking

$$\widehat{oldsymbol{\mu}} = rac{1}{n}\sum_{i=1}^n oldsymbol{x}_i.$$

Note that this is not the only choice for $\boldsymbol{\mu}$ — any choice that puts $\sum_i \boldsymbol{x}_i - n\boldsymbol{\mu}$ into the column space of \boldsymbol{A} will work. But the choice above is intuitive, so we will go with it.

With $\{\widehat{\boldsymbol{\theta}}_i\}$ and $\widehat{\boldsymbol{\mu}}$ solved for, we now optimize over \boldsymbol{A} . We want to solve

$$\underset{\boldsymbol{A} \in \mathbb{R}^{n \times k}}{\text{minimize}} \quad \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \widehat{\boldsymbol{\mu}} - \boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{x}_{i} - \widehat{\boldsymbol{\mu}})\|_{2}^{2} \quad \text{subject to} \quad \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \mathbf{I}.$$

We will assume, without loss of generality, that $\hat{\mu} = 0$, as we could simply use the variable substitution $\tilde{x}_i = x_i - \hat{\mu}$ above. The program becomes

$$\underset{\boldsymbol{A} \in \mathbb{R}^{n \times k}}{\text{minimize}} \quad \sum_{i=1}^{n} \| (\mathbf{I} - \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}) \boldsymbol{x}_{i} \|_{2}^{2} \quad \text{subject to} \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} = \mathbf{I}.$$

Expanding the functional, and again using the fact that $(\mathbf{I} - \mathbf{A}\mathbf{A}^{\mathrm{T}})$ is a projector,

$$\sum_{i=1}^{n} \|(\mathbf{I} - \boldsymbol{A}\boldsymbol{A}^{\mathrm{T}})\boldsymbol{x}_{i}\|_{2}^{2} = \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathrm{T}}(\mathbf{I} - \boldsymbol{A}\boldsymbol{A}^{\mathrm{T}})\boldsymbol{x}_{i}$$
$$= \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}\boldsymbol{x}_{i}.$$

The first term does not depend on \boldsymbol{A} , and the second term is always negative, so our problem is equivalent to

$$\underset{\boldsymbol{A} \in \mathbb{R}^{n \times k}}{\text{maximize}} \quad \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i} \quad \text{subject to} \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} = \mathbf{I}.$$

For any vector \boldsymbol{v} , it is easy to see that $\|\boldsymbol{v}\|_2^2 = \text{trace}(\boldsymbol{v}\boldsymbol{v}^{\mathrm{T}})$. Thus, the objective function above can also be written as

$$\begin{split} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i} &= \sum_{i=1}^{n} \|\boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i}\|_{2}^{2} \\ &= \sum_{i=1}^{n} \operatorname{trace}(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{A}) \\ &= \operatorname{trace}\left(\boldsymbol{A}^{\mathrm{T}} \left(\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}}\right) \boldsymbol{A}\right) \\ &= \operatorname{trace}(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{A}), \end{split}$$

where $\boldsymbol{S} = \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}}$ is a scaled version of the sample covariance matrix.

By construction, \boldsymbol{S} is symmetric positive semi-definite, so it has eigenvalue decomposition

$$\boldsymbol{S} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathrm{T}},$$

where
$$\boldsymbol{U}$$
 is a $d \times d$ orthonormal matrix, $\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U} = \boldsymbol{U}\boldsymbol{U}^{\mathrm{T}} = \mathbf{I}$, and
 $\boldsymbol{\Lambda} = \operatorname{diag}(\{\lambda_i\})$, with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$. Then
 $\operatorname{trace}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{S}\boldsymbol{A}) = \operatorname{trace}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{A}) = \operatorname{trace}(\boldsymbol{W}^{\mathrm{T}}\boldsymbol{\Lambda}\boldsymbol{W})$,
where $\boldsymbol{W} = \boldsymbol{U}^{\mathrm{T}}\boldsymbol{A}$. Notice that \boldsymbol{W} also has orthonormal columns,
as $\boldsymbol{W}^{\mathrm{T}}\boldsymbol{W} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{A} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \mathbf{I}$. So we can solve the program
maximize $\operatorname{trace}(\boldsymbol{W}^{\mathrm{T}}\boldsymbol{\Lambda}\boldsymbol{W})$ subject to $\boldsymbol{W}^{\mathrm{T}}\boldsymbol{W} = \mathbf{I}$,
and then take $\hat{\boldsymbol{A}} = \boldsymbol{U}^{\mathrm{T}}\widehat{\boldsymbol{W}}$.

We can show that the last maximization program above is equivalent to a simple linear program that we can solve by inspection. Let $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_k$ be the columns of \boldsymbol{W} . Then

$$\operatorname{trace}(\boldsymbol{W}^{\mathrm{T}}\boldsymbol{\Lambda}\boldsymbol{W}) = \sum_{i=1}^{k} \boldsymbol{w}_{i}^{\mathrm{T}}\boldsymbol{\Lambda}\boldsymbol{w}_{i}$$
$$= \sum_{i=1}^{k} \sum_{j=1}^{d} w_{i}(j)^{2}\lambda_{j}$$
$$= \sum_{j=1}^{d} h_{j}\lambda_{j}, \quad h_{j} = \sum_{i=1}^{k} w_{i}(j)^{2} = \sum_{i=1}^{k} W(i,j)^{2}.$$

The h_j , $j = 1, \ldots, d$ above are the sums of the squares of the *rows* of W. It is clear that $h_j \ge 0$. It is also true that

$$\sum_{j=1}^d h_j = k,$$

as the fact that the norm of each columns of \boldsymbol{W} is 1 means that

$$\sum_{j=1}^{d} \sum_{i=1}^{k} W(i,j)^2 = \sum_{i=1}^{k} \left(\sum_{j=1}^{d} W(i,j)^2 \right) = \sum_{i=1}^{k} 1 = k.$$

Finally, it is also true that $h_j \leq 1$. Here is why: since the columns of \boldsymbol{W} are orthonormal, they can be considered as part of an orthonormal basis for all of \mathbb{R}^d . That is, there is a (and actually there are many) $d \times (d-k)$ matrix \boldsymbol{W}_0 such that the columns of

$$oldsymbol{W}' = egin{bmatrix} oldsymbol{W} & oldsymbol{W}_0 \end{bmatrix}$$

form an orthonormal basis for \mathbb{R}^d . Since \mathbf{W}' is square, $\mathbf{W}'\mathbf{W}'^{\mathrm{T}} = \mathbf{I}$, meaning the sum of the squares of each row are equal to 1. Thus

$$h_j = \sum_{i=1}^k W(i,j)^2 \le \sum_{i=1}^d W'(i,j)^2 = 1.$$

With these constraints on the h_j , let's see how large we can make the quantity of interest:

$$\underset{\boldsymbol{h}\in\mathbb{R}^d}{\text{maximize}} \quad \sum_{j=1}^d h_j \lambda_j \quad \text{subject to} \quad \sum_{j=1}^d h_j = k, \quad 0 \le h_j \le 1.$$

This is a linear program, but we can intuit the answer. Since all of the λ_j are positive, we want to have their weights (i.e., the h_j) as large as possible for the largest entries. Since the weights are constrained to be less than 1, and their sum is k, this simply means we assign a weight of 1 to the k largest terms, and 0 to the others:

$$\widehat{h}_j = \begin{cases} 1, & j = 1, \dots, k, \\ 0, & \text{otherwise.} \end{cases}$$

This means that the sum of the squares of the entries in the rows of the corresponding \widehat{W} are 1 for the first k, and zero below — there

are many matrices with orthonormal columns which fit the bill, but a specific one which does is

$$\widehat{\boldsymbol{W}} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ \mathbf{0}_{(d-k) \times k} \end{bmatrix}.$$
 (1)

Taking $\widehat{A} = U^{\mathrm{T}} \widehat{W}$, this results in

$$\widehat{oldsymbol{A}} = egin{bmatrix} oldsymbol{u}_1 & oldsymbol{u}_2 & \cdots & oldsymbol{u}_k \end{bmatrix},$$

where the \boldsymbol{u}_i above are the first k columns of \boldsymbol{U} .

PCA Theorem $\min_{\boldsymbol{\mu}, \boldsymbol{A}, \{\boldsymbol{\theta}_i\}} \sum_{i=1}^n \|\boldsymbol{x}_i - \boldsymbol{\mu} - \boldsymbol{A}\boldsymbol{\theta}_i\|_2^2, \text{ subject to } \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \mathbf{I},$ has solution $\widehat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i, \quad \widehat{\boldsymbol{A}} = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_k \end{bmatrix}, \quad \widehat{\boldsymbol{\theta}}_i = \widehat{\boldsymbol{A}}^{\mathrm{T}}(\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}),$ where $\boldsymbol{u}_1, \dots, \boldsymbol{u}_k$ are the eigenvectors corresponding to the k largest eigenvalues of

$$oldsymbol{S} = \sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^{ ext{T}}.$$

Note that our analysis above shows that the choice of A is not unique — we are really choosing the subspace spanned by the columns of A, and do not care which orthobasis we use to span it. In the end,

taking $\widehat{A}' = \widehat{A}Q$, for any $k \times k$ orthonormal matrix Q would also work, as

$$\widehat{\boldsymbol{A}}^{'}\widehat{\boldsymbol{A}}^{'\mathrm{T}}=\widehat{\boldsymbol{A}}\boldsymbol{Q}\boldsymbol{Q}^{\mathrm{T}}\widehat{\boldsymbol{A}}^{\mathrm{T}}=\widehat{\boldsymbol{A}}\widehat{\boldsymbol{A}}^{\mathrm{T}}.$$

In our choice for $\widehat{\boldsymbol{W}}$ in (1) above, we would take

$$\widehat{oldsymbol{W}} = egin{bmatrix} oldsymbol{Q} \ oldsymbol{0}_{(d-k) imes k} \end{bmatrix},$$

which also meets the constraints dictated by the \hat{h}_j — the sum of the squares of the entries in the rows if 1 for the first k, zero for the last d - k, and the columns are orthonormal.