
Puzzle: Time-series forecasting

Suppose we wish to predict whether the price of a stock is 
going to go up or down tomorrow

• Take history over a long period of time

• Normalize the time series to zero mean, unit variance

• Form all possible input-output pairs with
– input = previous 20 days of stock prices

– output = price movement on the 21st day

• Randomly split data into training and testing data

• Train on training data only, test on testing data only

Based on the test data, it looks like we can consistently 
predict the price movement direction with accuracy ~52%

Are we going to be rich?

Principal component analysis (PCA)

• Unsupervised

• Linear

• Loss criteria: Sum of squared errors

The idea behind PCA is to find an approximation

where

•
• with orthonormal columns

•

Derivation of PCA

Mathematically, we can define          and                   as the 
solution to 

The hard part of this problem is finding       

Given    , it is relatively easy to show that

Determining as

It remains to minimize

with respect to 

For convenience, we will assume that            , since 
otherwise we could just substitute

In this case the problem reduces to minimizing   



Determining as

Expanding this out, we obtain

Thus, we can instead focus on maximizing 

Determining as

Note that for any vector   , we have

Thus, we can write 

is a scaled version of the empirical 
covariance matrix, sometimes called the scatter matrix

Determining as

The problem of determining     reduces to the optimization 
problem

Analytically deriving the optimal      is not too hard, but is a 
bit more involved than you might initially expect 
(especially if you already know the answer)

We will provide justification for the solution for the           
case – the general case is proven in the supplementary notes   

One-dimensional example

Consider the optimization problem

Form the Lagrangian

Take the gradient and set it equal to zero

Take     to be the eigenvector of     corresponding to the 
maximal eigenvalue

must be an eigenvector of 



The general case

For general values of   , the solution is obtained by computing 
the eigendecomposition of    :

where     is an orthonormal matrix with columns                
and 

where 

The general case

The optimal choice of      in this case is given by

i.e., take the top     eigenvectors of   

Terminology

• principal component transform:

• principal component: 

• principal eigenvector: 

Connection to SVD

Recall the singular value decomposition (SVD)

If     is a real           matrix

• is a           orthonormal matrix

• is an            orthonormal matrix

• is a            diagonal matrix 
where                           and 

The principal eigenvectors are the first     columns of      
when the columns of      are filled with

singular value

square root of       eigenvalue of 

Visual interpretation



Practical matters

It is customary to center and scale a data set so that it has 
zero mean and unit variance along each feature

This puts all features on an “equal playing field”

These steps may be omitted when

• The data are known to be zero mean

• The data are known to have comparable units of 
measurement

To select   , we typically choose it to be large enough so that

is sufficiently small

When to use PCA

• When the data form a single “point cloud” in space

• When the data are approximately Gaussian, or some other 
“elliptical” distribution

• When low-rank subspaces capture the majority of the 
variation

Learning from pairwise distances

In PCA, our goal is to take a high-dimensional dataset and 
generate a low-dimensional embedding of the data that 
preserves the (Euclidean) structure of the data

It is not uncommon to encounter situations where the 
Euclidean distance is not appropriate, or where we do not 
even begin with direct access to the data

Instead, suppose we are given an            dissimilarity matrix
and wish to find a dimension    and points                             

such that                           for some distance function 

Applications

• visualization/dimensionality reduction

• extend algorithms to non-Euclidean (or non-metric) data

Dissimilarity matrix

A dissimilarity matrix should satisfy

•

•

•

Note that we do not require the triangle inequality, since in 
practice many measures of “dissimilarity” will not have this 
property 

In general, a perfect embedding into the desired dimension   
will not exist

We will be interested mostly in approximate embeddings



Multidimensional scaling (MDS)

The problem of finding                            such that
approximately agrees with       is known as 
multidimensional scaling (MDS)

There are a number of variants of MDS based on

• our choice of distance function

• how we quantify “approximately agrees with”

• whether we have access to all entries of

Main distinction

• metric methods attempt to ensure that

• nonmetric methods only attempt to preserve rank ordering, 
i.e., if                 then nonmetric methods seek an 
embedding that satisfies

Example: Creating a map

Example: Marketing Example: Whisky



Euclidean embeddings

Today we will focus primarily on the metric case where we 
observe all of     and choose 

To see how we might find an embedding, first consider the 
reverse process…

Given an (exact) embedding     (where the
form the columns of    ), how can we compute     ?

Consider      , i.e., the matrix with entries

where                                            and

Finding the embedding

Thus, we know that

We are given      , but    is actually part of what we are trying 
to estimate, right?

Consider the “centering matrix”

Observe that                  is simply our data set      with the 
mean subtracted off

If all we know are distances between pairs of points, we have 
lost all information about any rigid transformation (e.g., a 
translation) of our data

Finding the embedding

We are free to enforce that our embedding is centered 
around the origin, in which case we are interested in

Note that

We can compute                                          , from which we 
can then find      by computing an eigendecomposition

Classical MDS

Even if a dissimilarity matrix     cannot be perfectly 
embedded into    dimensions, this suggests an approximate 
algorithm 

1. Form  

2. Compute the eigendecomposition

3. Return                             , i.e., the matrix whose rows are 
given by              for

Can be shown that classical MDS finds the embedding that 
minimizes either                       or 
(Eckart-Young Theorem)



Equivalence between PCA and MDS

Suppose we have                            and set     to be such that

The result of classical MDS applied to      is the same (up to a 
rigid transformation) as applying PCA to 

PCA computes an eigendecomposition of                  , or 
equivalently, the SVD of      to yield the factorization

MDS computes an eigendecomposition of  

Extensions of MDS

Classical MDS minimizes the loss function

Many other choices for loss function exist

Perhaps the most common alternative is the stress function

where the         are fixed weights
– can use                       to handle missing data

– can set                  to more heavily penalize errors on nearby 
pairs of points

Stress criteria are typically minimized by iterative procedures

Nonlinear embeddings

The goal of embeddings/dimensionality reduction is to map a 
(potentially) high-dimensional dataset into a low-dimensional 
one in a way that preserves global and/or local geometric and 
topological properties are preserved

While PCA/MDS is the most popular method for this in 
practice, many high-dimensional data sets have nonlinear 
structure that is difficult to capture via linear methods

Example: Swiss roll



Kernel PCA

One approach to nonlinear dimensionality reduction is to 
“kernelize” PCA in the same way that we did for SVMs

• Map the data                   to             

where     is nonlinear and 

• Apply PCA to                                 via 
• Apply MDS via 

Isomap

Isometric feature mapping is essentially just the application 
of MDS to dissimilarities which are derived not from the raw 
data but based on shortest paths in a proximity graph

– e.g., a graph containing edges only between a data point and 
its nearest-neighbors

This path length is viewed as an approximation to a geodesic 
distance on the underlying data manifold

Reference: Tennenbaum, de Silva, and Langford, “A Global 
Geometric Framework for Nonlinear Dimensionality 
Reduction” Science, 2000.

The idea behind Isomap is most easily seen by returning to 
our “Swiss roll” example

Example: Swiss roll


