
Puzzle: Time-series forecasting

Suppose we wish to predict whether the price of a stock is

going to go up or down tomorrow

• Take history over a long period of time

• Normalize the time series to zero mean, unit variance

• Form all possible input-output pairs with

– input = previous 20 days of stock prices

– output = price movement on the 21st day

• Randomly split data into training and testing data

• Train on training data only, test on testing data only

Based on the test data, it looks like we can consistently

predict the price movement direction with accuracy ~52%

Are we going to be rich?

Principal component analysis (PCA)

• Unsupervised

• Linear

• Loss criteria: Sum of squared errors

The idea behind PCA is to find an approximation

where

•

• with orthonormal columns

•

Derivation of PCA

Mathematically, we can define and as the

solution to

The hard part of this problem is finding

Given , it is relatively easy to show that

Determining

It remains to minimize

with respect to

For convenience, we will assume that , since

otherwise we could just substitute

In this case the problem reduces to minimizing

Determining

Expanding this out, we obtain

Thus, we can instead focus on maximizing

Determining

Note that for any vector , we have

Thus, we can write

is a scaled version of the empirical

covariance matrix, sometimes called the scatter matrix

Determining

The problem of determining reduces to the optimization

problem

Analytically deriving the optimal is not too hard, but is a

bit more involved than you might initially expect

(especially if you already know the answer)

We will provide justification for the solution for the

case – the general case is proven in the supplementary notes

One-dimensional example

Consider the optimization problem

Form the Lagrangian

Take the gradient and set it equal to zero

Take to be the eigenvector of corresponding to the

maximal eigenvalue

must be an eigenvector of

The general case

For general values of , the solution is obtained by computing

the eigendecomposition of :

where is an orthonormal matrix with columns

and

where

The general case

The optimal choice of in this case is given by

i.e., take the top eigenvectors of

Terminology

• principal component transform:

• principal component:

• principal eigenvector:

Connection to SVD

Recall the singular value decomposition (SVD)

If is a real matrix

• is a orthonormal matrix

• is an orthonormal matrix

• is a diagonal matrix

where and

The principal eigenvectors are the first columns of

when the columns of are filled with

singular value

square root of eigenvalue of

Visual interpretation

Practical matters

It is customary to center and scale a data set so that it has

zero mean and unit variance along each feature

This puts all features on an “equal playing field”

These steps may be omitted when

• The data are known to be zero mean

• The data are known to have comparable units of

measurement

To select , we typically choose it to be large enough so that

is sufficiently small

When to use PCA

• When the data form a single “point cloud” in space

• When the data are approximately Gaussian, or some other

“elliptical” distribution

• When low-rank subspaces capture the majority of the

variation

Learning from pairwise distances

In PCA, our goal is to take a high-dimensional dataset and

generate a low-dimensional embedding of the data that

preserves the (Euclidean) structure of the data

It is not uncommon to encounter situations where the

Euclidean distance is not appropriate, or where we do not

even begin with direct access to the data

Instead, suppose we are given an dissimilarity matrix

and wish to find a dimension and points

such that for some distance function

Applications

• visualization/dimensionality reduction

• extend algorithms to non-Euclidean (or non-metric) data

Dissimilarity matrix

A dissimilarity matrix should satisfy

•

•

•

Note that we do not require the triangle inequality, since in

practice many measures of “dissimilarity” will not have this

property

In general, a perfect embedding into the desired dimension

will not exist

We will be interested mostly in approximate embeddings

Multidimensional scaling (MDS)

The problem of finding such that

approximately agrees with is known as

multidimensional scaling (MDS)

There are a number of variants of MDS based on

• our choice of distance function

• how we quantify “approximately agrees with”

• whether we have access to all entries of

Main distinction

• metric methods attempt to ensure that

• nonmetric methods only attempt to preserve rank

ordering, i.e., if then nonmetric methods seek

an embedding that satisfies

Example: Creating a map

Example: Marketing

Example: Whisky

Euclidean embeddings

Today we will focus primarily on the metric case where we

observe all of and choose

To see how we might find an embedding, first consider the

reverse process…

Given an (exact) embedding (where the

form the columns of), how can we compute ?

Consider , i.e., the matrix with entries

where and

Finding the embedding

Thus, we know that

We are given , but is actually part of what we are trying

to estimate, right?

Consider the “centering matrix”

Observe that is simply our data set with the

mean subtracted off

If all we know are distances between pairs of points, we have

lost all information about any rigid transformation (e.g., a

translation) of our data

Finding the embedding

We are free to enforce that our embedding is centered

around the origin, in which case we are interested in

Note that

We can compute , from which we

can then find by computing an eigendecomposition

Classical MDS

Even if a dissimilarity matrix cannot be perfectly

embedded into dimensions, this suggests an approximate

algorithm

1. Form

2. Compute the eigendecomposition

3. Return , i.e., the matrix whose rows are

given by for

Can be shown that classical MDS finds the embedding that

minimizes either or

(Eckart-Young Theorem)

Equivalence between PCA and MDS

Suppose we have and set to be such that

The result of classical MDS applied to is the same (up to a

rigid transformation) as applying PCA to

PCA computes an eigendecomposition of , or

equivalently, the SVD of to yield the factorization

MDS computes an eigendecomposition of

Extensions of MDS

Classical MDS minimizes the loss function

Many other choices for loss function exist

Perhaps the most common alternative is the stress function

where the are fixed weights

– can use to handle missing data

– can set to more heavily penalize errors on nearby

pairs of points

Stress criteria are typically minimized by iterative procedures

Nonlinear embeddings

The goal of embeddings/dimensionality reduction is to map a

(potentially) high-dimensional dataset into a low-dimensional

one in a way that preserves global and/or local geometric

and topological properties are preserved

While PCA/MDS is the most popular method for this in

practice, many high-dimensional data sets have nonlinear

structure that is difficult to capture via linear methods

Example: Swiss roll

Kernel PCA

One approach to nonlinear dimensionality reduction is to

“kernelize” PCA in the same way that we did for SVMs

• Map the data to

where is nonlinear and

• Apply PCA to via

• Apply MDS via

Isomap

Isometric feature mapping is essentially just the application

of MDS to dissimilarities which are derived not from the raw

data but based on shortest paths in a proximity graph

– e.g., a graph containing edges only between a data point and

its nearest-neighbors

This path length is viewed as an approximation to a geodesic

distance on the underlying data manifold

Reference: Tennenbaum, de Silva, and Langford, “A Global

Geometric Framework for Nonlinear Dimensionality

Reduction” Science, 2000.

The idea behind Isomap is most easily seen by returning to

our “Swiss roll” example

Example: Swiss roll

