
Principal component analysis (PCA)

Given a dataset , let denote the

matrix given by

The goal in PCA is to find an optimal approximation

where , is a matrix with orthonormal

columns (i.e.,), and

For data that is “centered” (has been

subtracted from each column), this reduces to

PCA as matrix factorization

The problem of determining reduces to the optimization

problem

For “centered” data, the solution corresponds to taking to

be the top eigenvectors of

Note that by using the SVD , we can also obtain

this by taking to be the first columns of

(This also give us by taking the first rows of)

PCA as matrix factorization

Multidimensional scaling (MDS)

We also considered the problem we observe only the

“dissimilarity matrix”

In (classical) MDS, our goal is to find the matrix

directly from

To see how to do this, suppose first that we are given the

matrix whose entries are given by

for some

Last time we argued that under this assumption, we have

where is the “centering matrix” and is

simply the data set with the column mean subtracted off

MDS as matrix factorization

Thus, since

we can recover (a potentially rotated version of) by

simply computing an eigendecomposition:

Moreover, has been rotated so that the optimal

embedding into only dimensions is given by taking

to be the first rows of

Equivalence between PCA and MDS

Suppose we have (centered) data and set

to be such that

The result of classical MDS applied to is the same (up to a

rigid transformation) as applying PCA to

PCA computes an eigendecomposition of , or

equivalently, the SVD of to yield the factorization

is the first rows of

MDS computes an eigendecomposition of

Subtle difference between PCA and MDS

The two approaches give the same embedding

PCA also comes with and

• lets us compute

• more importantly, lets us compute

The latter is critical in a real-world application if we want to

use PCA/MDS as a technique for feature extraction

Is there anything we can do to recover and in the MDS

setting?

Almost… we cannot recover and without …

But we can compute the mapping

Computing the MDS mapping

Recall that given the SVD of , is given by

the first columns of

Rearranging, we have that

MDS provides us with : the first rows of

This also gives us : the first columns of

Remember that we obtained via the eigendecomposition

Neat fact: Since , is an eigenvector of (with

eigenvalue), and thus

Is this enough?

Putting this all together, we can write

OK… but this still looks like we need to have , right?

In MDS, we only get to observe and wish to embed

based on the observations

Using what we actually have…

We are given and

Let denote the column mean of

Consider the vector :

Out-of-sample extension for MDS

From this, we have that

Combining this with what we had before, we can write

where the last equality follows from our “neat fact” used a

few slides before

Thus, we can easily add new points to an MDS embedding!

Nonlinear embeddings

The goal of embeddings/dimensionality reduction is to map a

(potentially) high-dimensional dataset into a low-dimensional

one in a way such that global and/or local geometric and

topological properties are preserved

While PCA/MDS is the most popular method for this in

practice, many high-dimensional data sets have nonlinear

structure that is difficult to capture via linear methods

Kernel PCA

One approach to nonlinear dimensionality reduction is to

“kernelize” PCA in the same way that we did for SVMs

Map the data to where is

a nonlinear mapping to a (typically) higher dimensional space

• Apply PCA to via

– requires explicitly computing

• Apply MDS via

i.e., compute eigendecomposition of

Summary of kernel PCA

Input: , kernel , desired dimension

1. Form , where is our kernel matrix and

is the (now familiar) centering matrix

2. Compute eigendecomposition

3. Set to be the first rows of

Output: A mapping given by

where

Isomap

Isometric feature mapping (Isomap) is another nonlinear

dimensionality reduction technique that can be viewed as an

extension of MDS

Assumes that the data lives on a low-dimensional manifold

(also referred to as a technique for manifold learning)

Given a dataset , rather than computing the

matrix via , Isomap tries to compute an

estimate of the geodesic distance along the manifold

Estimating the geodesic distance

Geodesic distances are estimated by computing shortest paths

in a proximity graph

Form a matrix as follows:

• for each , define a local neighborhood

– -nearest neighbors of

– all such that

• for each , set for all

represents the weighted adjacency matrix of a graph

Compute by setting to be the length of the shortest

path from node to node in the graph described by

Out-of-sample extension using the same technique as MDS

Example: Swiss roll

Example: Facial pose

Example: Handwritten digits

Locally linear embedding (LLE)

A potential challenge for Isomap is that estimates of the

geodesic distance between points that are very far from each

other on the manifold can grow increasingly inaccurate

Locally linear embedding (LLE) capitalizes on the intuition

that a data manifold that is globally nonlinear will still appear

linear in local pieces

LLE does not try to explicitly model global geodesic distances,

but instead tries to preserve the structure in the data by

trying to “patch together” local pieces of the manifold

The LLE algorithm

Given a data set , LLE consists of

1. For each , define a local neighborhood

2. Solve

3. Fix and solve

constrained

least squares

problem

eigenvalue

problem

Another take on LLE

The eigenvalue problem at the heart of LLE can also (more

compactly) be written as

which in turn can also be written as

This is exactly the same type of problem we encountered in

PCA, the solution to which can be obtained via an

eigendecomposition of

Note: Out-of-sample extension via

where are computed via the same constrained least

squares problem as above

Example: Facial expression

Kernel PCA, Isomap, and LLE

• Kernel PCA

– assumes linear embedding will work when using suitable

features

• Isomap

– emphasizes global distance preservation

– can distort local geometry

• LLE

– emphasizes local geometry preservation

– can distort global geometry

 far away points can get mapped close to each other

• Many other variants of nonlinear dimensionality reduction

along these same lines have been developed

– Laplacian eigenmaps, local tangent space alignment, Hessian

LLE, diffusion maps, …

