
Principal component analysis (PCA)

Given a dataset                            , let      denote the

matrix given by 

The goal in PCA is to find an optimal approximation

where             ,     is a            matrix with orthonormal 

columns (i.e.,                 ), and

For data that is “centered” (                           has been 

subtracted from each column), this reduces to                 



PCA as matrix factorization

The problem of determining     reduces to the optimization 

problem

For “centered” data, the solution corresponds to taking     to 

be the top    eigenvectors of

Note that by using the SVD                      , we can also obtain 

this by taking     to be the first    columns of     

(This also give us      by taking the first    rows of          )



PCA as matrix factorization



Multidimensional scaling (MDS)

We also considered the problem we observe only the 

“dissimilarity matrix”    

In (classical) MDS, our goal is to find the           matrix      

directly from  

To see how to do this, suppose first that we are given the 

matrix       whose entries are given by                

for some

Last time we argued that under this assumption, we have

where                          is the “centering matrix” and         is 

simply the data set      with the column mean subtracted off



MDS as matrix factorization

Thus, since

we can recover (a potentially rotated version of)        by 

simply computing an eigendecomposition:

Moreover,         has been rotated so that the optimal 

embedding into only     dimensions is given by taking 

to be the first     rows of 



Equivalence between PCA and MDS

Suppose we have (centered) data                             and set     

to be such that

The result of classical MDS applied to      is the same (up to a 

rigid transformation) as applying PCA to 

PCA computes an eigendecomposition of                  , or 

equivalently, the SVD of      to yield the factorization

is the first    rows of

MDS computes an eigendecomposition of  



Subtle difference between PCA and MDS

The two approaches give the same embedding      

PCA also comes with      and     

• lets us compute

• more importantly, lets us compute

The latter is critical in a real-world application if we want to 

use PCA/MDS as a technique for feature extraction

Is there anything we can do to recover     and     in the MDS 

setting?

Almost… we cannot recover     and     without     …

But we can compute the mapping 



Computing the MDS mapping

Recall that given the SVD of                         ,      is given by 

the first    columns of     

Rearranging, we have that

MDS provides us with     : the first    rows of

This also gives us      : the first    columns of 

Remember that we obtained      via the eigendecomposition

Neat fact: Since               ,     is an eigenvector of     (with 

eigenvalue            ), and thus



Is this enough?

Putting this all together, we can write

OK… but this still looks like we need to have     , right? 

In MDS, we only get to observe        and wish to embed     

based on the observations



Using what we actually have…

We are given      and

Let                      denote the column mean of

Consider the vector               :



Out-of-sample extension for MDS

From this, we have that

Combining this with what we had before, we can write

where the last equality follows from our “neat fact” used a 

few slides before

Thus, we can easily add new points to an MDS embedding!



Nonlinear embeddings

The goal of embeddings/dimensionality reduction is to map a 

(potentially) high-dimensional dataset into a low-dimensional 

one in a way such that global and/or local geometric and 

topological properties are preserved

While PCA/MDS is the most popular method for this in 

practice, many high-dimensional data sets have nonlinear 

structure that is difficult to capture via linear methods



Kernel PCA

One approach to nonlinear dimensionality reduction is to 

“kernelize” PCA in the same way that we did for SVMs

Map the data                   to             where     is 

a nonlinear mapping to a (typically) higher dimensional space

• Apply PCA to                                 via 

– requires explicitly computing

• Apply MDS via 

i.e., compute eigendecomposition of



Summary of kernel PCA

Input:                            , kernel    , desired dimension

1. Form                     , where     is our kernel matrix and      

is the (now familiar) centering matrix

2. Compute eigendecomposition

3. Set to be the first    rows of 

Output: A mapping                      given by

where



Isomap

Isometric feature mapping (Isomap) is another nonlinear 

dimensionality reduction technique that can be viewed as an 

extension of MDS

Assumes that the data lives on a low-dimensional manifold 

(also referred to as a technique for manifold learning)

Given a dataset                           , rather than computing the 

matrix     via                             , Isomap tries to compute an 

estimate of the geodesic distance along the manifold



Estimating the geodesic distance

Geodesic distances are estimated by computing shortest paths 

in a proximity graph

Form a matrix      as follows:

• for each     , define a local neighborhood

– -nearest neighbors of  

– all      such that          

• for each     , set                                for all             

represents the weighted adjacency matrix of a graph

Compute      by setting      to be the length of the shortest 

path from node    to node    in the graph described by

Out-of-sample extension using the same technique as MDS



Example: Swiss roll



Example: Facial pose



Example: Handwritten digits



Locally linear embedding (LLE)

A potential challenge for Isomap is that estimates of the 

geodesic distance between points that are very far from each 

other on the manifold can grow increasingly inaccurate

Locally linear embedding (LLE) capitalizes on the intuition 

that a data manifold that is globally nonlinear will still appear 

linear in local pieces

LLE does not try to explicitly model global geodesic distances, 

but instead tries to preserve the structure in the data by 

trying to “patch together” local pieces of the manifold



The LLE algorithm

Given a data set                          , LLE consists of 

1. For each     , define a local neighborhood    

2. Solve

3. Fix       and solve

constrained

least squares

problem

eigenvalue

problem



Another take on LLE

The eigenvalue problem at the heart of LLE can also (more 

compactly) be written as

which in turn can also be written as

This is exactly the same type of problem we encountered in 

PCA, the solution to which can be obtained via an 

eigendecomposition of

Note: Out-of-sample extension via                 

where                are computed via the same constrained least 

squares problem as above



Example: Facial expression



Kernel PCA, Isomap, and LLE

• Kernel PCA

– assumes linear embedding will work when using suitable 

features

• Isomap

– emphasizes global distance preservation

– can distort local geometry

• LLE

– emphasizes local geometry preservation

– can distort global geometry

 far away points can get mapped close to each other

• Many other variants of nonlinear dimensionality reduction 

along these same lines have been developed

– Laplacian eigenmaps, local tangent space alignment, Hessian 

LLE, diffusion maps, …


