
Structured Matrix Factorization

Many problems in machine learning and signal processing can be
formulated as follows:
Given a d× n matrix X , find a d× r matrix B and a r× n matrix
C such that

X ≈ BC,

under the constraints that B and C have some kind of structure.

To begin, let’s review a fundamental result in modern linear algebra:

Eckart-Young Theorem: Let X be a d × n matrix with SVD
X = UΣV T. Then the best rank-r approximation to X is

minimize
Y ∈Rd×n

‖X − Y ‖2F subject to rank(Y ) = r,

is
Ŷ = U rΣrV

T
r ,

where Σr is the r × r diagonal matrix containing the r largest sin-
gular values of X , U r is a d × r matrix whose columns are the
corresponding left singular vectors, and V r contains the correspond-
ing right singular vectors.

Proof of the above is more involved than you might think, but nev-
ertheless, it is a classical result. We can also replace the Frobenius
norm ‖ · ‖2F (sum of the squares of the singular values) in the opti-
mization above with the spectral norm ‖ · ‖ (largest singular value).
We could also re-write the program as

minimize
B∈Rd×r

C∈Rr×n

‖X −BC‖2F .
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The rank constraint is now implicit in the size of the matrices B and
C. A solution to the above is then

B̂ = U rΣ
1/2
r , Ĉ = Σ1/2

r V T
r .

Of course, this solution is not unique, as we may divvy up the Σr in
an arbitrary way, i.e.

B̂ = U rΣr, Ĉ = V T
r ,

or even apply a general invertible r × r matrix to the left and right:

B̂ = U rΣ
1/2
r A, Ĉ = A−1Σ1/2

r V T
r ,

etc.

Although we did not explicitly enforce this for the optimization, it is
easy (and most natural) to make the factors B̂ and Ĉ have orthog-
onal columns and rows, respectively.

What are we doing when we perform an approximation of this kind?
Suppose that the columns of X are data points in Rd:

X =
[
x1 x2 · · · xn

]
and suppose that there exists a small r � min(d, n), such that

X ≈ BC

=

 B


c1 c2 · · · cn

 ,
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i.e. xi ≈ Bci. This means that each xi is a different (linear) com-
bination (specified by the entries in ci) of a small number of latent
features (specified by the columns of B).

Example: Eigenfaces

The data points xi are d-pixel images1 of faces (d is on the order of
thousands):

There are many such images (n on the order of 1000s), but X can
be approximated very well with rank r = 200. Here are the columns
of B̂:

1Example from http://kixor.net/school/2008spring/comp776/
assn3/.
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Example: Latent Semantic Indexing

LSI is used to automatically group documents together by their se-
mantic content. Here, the data we are given is a document term ma-
trix. We parse n documents (encyclopedia/wikipedia entries, news-
paper article, etc.) and count the number of times d different words
appear; the tally for word k in document i is the entry X [k, i]:

X [k, i] = # times word k appeared in document i.

The rows of X tend to be correlated, so we can approximate X ≈
BC for r � min(d, n). This means that word frequency counts in
a document are basically a linear combination of a small number of
“feature counts” given by the columns of B.

But in both these cases, it is hard to interpret what the latent factors
really tell us about the data, other than being able to assist us in
some simple dimensionality reduction. This is because we have not
enforced the proper structure on the factors B,C.
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Non-negative matrix factorization

If we constrain the factors to have positive entries, we get different
(and perhaps more interesting) results:

minimize
B∈Rd×r

C∈Rr×n

‖X −BC‖2F , B ≥ 0, C ≥ 0. (1)

The idea behind this is that in many cases (including the face and
LSI examples above), what we are really looking for is a mixture of
positive factors. This problem is called non-negative matrix fac-
torization (NNMF).

Solving (1) is much more involved than in the unconstrained case.
Not only is there no closed-form solution, but the optimization is
non-convex, and comes with all the complications there-of.

But notice that if we fix one the factors, say B = B(0), then the
program

minimize
C∈Rr×n

‖X −B(0)C‖2F , C ≥ 0.

is separable by column; we can solve

minimize
ci∈Rr

‖xi −B(0)ci‖22 subject to ci ≥ 0,

for i = 1, . . . , n independently. Each of these subproblems is a
quadratics program, and so it solvable with off-the-shelf software.
The same thing is true if we pin down C = C(0) and optimize over
B. So NNMF algorithms typically alternate back and forth between
solving for B and solving for C.
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Here are some interesting results from the original paper on NNMF2

Faces:
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
n

i¼1
!

m

m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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The top is essentially the eigenfaces experiment, but where we restrict
the factors (B) and mixture coefficients (C) to be positive. Notice
that, as compared to the standard PCA experiment below it, that
the factors actually look like facial features.

2Lee and Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, October 1999.
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Latent semantic indexing:

Here is an example from the same article for LSI.

n = 30, 991 articles from an encyclopedia were parsed,
d = 15, 276 words counted
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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metal process method paper ... glass copper lead steel

person example time people ... rules lead leads law

Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.

Now the columns of B̂ can be interpreted as groupings of words that
appear together frequently.

On the top right, we see example weights for four different factors
that decomposed the (word count of) the US Constitution ... the two
factors (columns of B) on top, learned while training on a separate
data set, were given significant weights (entries in c), while the two
factors on bottom had very small weights.

The example on bottom shows the words associated with the two
factors whose entry in the row corresponding to the word ‘lead’ was
the greatest.
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Dictionary Learning

The dictionary learning problem is to (approximately) factor a d×n
matrix X as

X ≈ BC,

where B is d× d and orthonormal (or at least invertible), and C is
d×n and sparse. That is, the vast majority of the entries in C are
non-zero. x1 x2 · · · xn

 ≈
 B

c1 c2 · · · cn



≈

The idea is that we are looking for a basis (or dictionary) B such
that every data point xi can be written as a superposition of a small
number of columns of B. If we restrict the columns of B to be or-
thonormal, BTB = I, then we can interpret this problem as a search
for a sparsifying transform — we want a B so that the transform
coefficients ci = BTxi have as much of their energy compacted onto
a small set as possible.
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Sparsity

Fixed (i.e. unlearned) sparsifying transforms play a role in many
places in signal and image processing.

image xi with n pixels wavelet coefficients

chirp signal xi in time domain Gabor domain

Sparse transforms gives us a natural way to compress signals (fewer
numbers to code) and to remove noise (important coefficients “stick
up” past the noise floor).

Let’s make some of this more precise. If BTB = I then then columns
b1, . . . , bd for an orthobasis for Rd, meaning bTi bj = 0 for i 6= j and

9
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for any vector x, we can write

x =
d∑

k=1

c[k]bk, for c[k] = bTkx.

When we say a vector x is sparse in the B-domain, we mean that

x ≈
∑
k∈I

c[k]bk,

for some small index set I, |I| � d3. If we set x̂ =
∑

k∈I c[k]bk,
then by the generalized Parseval theorem, we know

‖x− x̂‖22 =
∑
k 6∈I

|c[k]|2,

and so if the coefficients outside of I are all very small, this approx-
imation error will be very small.

Note that this type of model is inherently nonlinear, as the I above
adapts to the vector x (i.e. which coefficients are important is dif-
ferent from signal to signal). Suppose that x1 and x2 are exactly
s-sparse in that

x1 =
∑
k∈I1

c1[k]bk, x2 =
∑
k∈I2

c2[k]bk,

for some |I1| = |I2| = s. Then the number of non-zero terms in
ax1 + bx2 for a, b ∈ R are located on I1 ∪ I2, which can be as large
as 2s ... this means that ax1 + bx2 will not in general be s-sparse.

3We are using the notation |I| to mean the number of elements in the set
I.
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Sparse approximation

How can we find the best sparse approximation for a vector x in a
basis B? The following optimization program is one way to pose
this problem. Using the notation ‖c‖0 = number of non-zero terms
in the vector c, we have

minimize
c∈Rd

‖x−Bc‖22 subject to ‖c‖0 ≤ s. (2)

When B is orthonormal, then

‖x−Bc‖2 = ‖BT(x−Bc)‖2 = ‖y − c‖2
where y is the vector of transform coefficients of x, y = BTx. The
resulting program

minimize
c∈Rd

‖y − c‖22 subject to ‖c‖0 ≤ s.

is easy to solve — simply take

Î = locations of s largest magnitude terms in y,

then

ĉ[k] =

{
y[k], k ∈ Î,
0, k 6∈ Î.

When B is not orthonormal but is invertible (so the columns of B
form a basis for Rd but not an orthobasis), then

‖x−Bc‖2 6= ‖B−1(x−Bc)‖2,
and so translating the optimization program into the B domain is
not possible. In fact, in this case solving (2) exactly is NP-hard.
But there are many heuristics for solving (2) in the general case
— one approach is to replace the ‖ · ‖0 constraint with the convex
‖c‖1 ≤ τ for some appropriate τ . There are also simple greedy
algorithms (most notable of which is orthogonal matching pursuit
(OMP) approximate solutions.
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Dictionary Learning Formulation

Back to the dictionary learning problem; given examples x1, . . . ,xn ∈
Rd, we want to find a d × d basis (dictionary) matrix B and a sets
of sparse expansion coefficients c1, . . . , cn ∈ Rd so thatx1 x2 · · · xn

 ≈
 B

c1 c2 · · · cn

 .
Let’s start by codifying this as an optimization program. We want
to solve

minimize
B,C

‖X−BC‖2F subject to ‖ci‖0 ≤ s, i = 1, . . . , n. (3)

The functional4 is simply the sum of all the approximation errors for
each of the data points:

‖X −BC‖2F =
n∑

i=1

∥∥∥∥∥xi −
d∑

k=1

ci[k]bk

∥∥∥∥∥
2

2

,

while the constraints ensure that only s terms are non-zero in each
of the ci.

The optimization program (3) is nonconvex, and impossible to solve
exactly under anything but ideal conditions. One class of techniques
for solving it alternate between fixing B and optimizing over C,
then fixing C and optimizing over B. Each of these problems is
more tractable.

4Recall that the Frobenius norm of a matrix squared ‖M‖2F is simply the
sum of all the squares of the entries in the matrix.
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In fact, let’s consider the case5 where we restrict BTB = I. With
orthonormal bk, both of the subproblems have known solutions. With
B fixed, we are solving

minimize
c1,...,cn

n∑
i=1

‖xi −Bci‖22 subject to ‖ci‖0 ≤ s, i = 1, . . . , n.

With B fixed, the above is really n decoupled problems of the form

minimize
ci

‖xi −Bci‖22 subject to ‖ci‖0 ≤ s.

We have already seen that the solution to this problem is to take ĉi
to contain the s largest magnitude coefficients in BTxi, and be zero
elsewhere.

Now suppose that the ci are fixed, and we want to solve

minimize
B

‖X −BC‖2F subject to BTB = I.

This is known as the orthogonal Procrustes problem, and as you
might guess by this point, its solution involves solving another eigen-
value/singular value problem. Note that

‖X −BC‖2F = ‖X‖2F + ‖BC‖2F − 2〈X,BC〉F
= ‖X‖2F + ‖C‖2F − 2〈X,BC〉F
= ‖X‖2F + ‖C‖2F − 2〈XCT,B〉F

and so since the first two terms do not involve B, the problem is
equivalent to

maximize
B

〈XCT,B〉F subject to BTB = I.

5For more details on this case, see O. Sezer, Data Driven Transform Opti-
mizations..., Georgia Tech ECE PhD Thesis, 2011.
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Taking the SVD of XCT = UΣV T, we know

〈XCT,B〉F = 〈UΣV T,B〉F = 〈Σ,UTBV 〉F .

Since U ,B and V are all d × d and orthonormal, so is UTBV .
Thus, the program is equivalent to

maximize
Z

〈Σ,Z〉F , subject to ZTZ = I,

where Σ is diagonal with Σ[i, i] ≥ 0. Also, since

〈Σ,Z〉F =
d∑

i=1

Σ[i, i]Z[i, i],

and Z[i, i] ≤ 1 (since the sum of the squares in each column/row
must be equal to 1), we know that 〈Σ,Z〉F is maximized when

Z[i, i] = 1 for all i = 1, . . . , d, i.e. for Ẑ = I. This means

B̂ = UV T.

Simple Dictionary Learning, Orthogonal Case:

• initialize orthonormal dictionary B(0) (e.g. B(0) = I)

• for j = 1, 2, . . .

– solve for C(j) by keeping the s largest magnitude terms
in each column of B(j−1)TX , and setting the rest to
zero;

– take SVD of XC(j)T = UΣV T, and set B(j) = UV T.

• repeat until ‖B(j) −B(j−1)‖F is appropriately small
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The case of learning non-orthogonal B is also of interest, and many
times results in a much sparser representation. Removing the con-
straint definitely changes the iterations, as the fact that BTB = I
played a role in the derivation of both steps above. In fact, significant
gains can be had by making B overcomplete, meaning that it has
more columns than rows.

The starting point for the non-orthogonal problem is the k-SVD al-
gorithm6. We will not present the details here, the interested student
can see the reference below, but the algorithm has two basic steps:

• With B(j−1) fixed, solve a series of n sparse approximation
problems to get C(j). These programs have form like (2) with
non-orthogonal B, so heuristics (e.g. OMP or `1 minimization)
are used to solve them.

• The dictionary B is updated one column at a time — to do
the update, we look at the error for all the data points that
use this column, then choose the new column in such a way
that this error is reduced as much as possible. Like everything
in unsupervised learning, this is done by finding a leading sin-
gular vector. The coefficients are also updated in place as the
corresponding columns change.

Again, details can be found in the footnoted reference.

6Aharon et al. “K-SVD: An algorithm for designing overcopmlete dictio-
naries for sparse representation,” IEEE Trans. Sig. Proc., November 2006.
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Examples

The first people to think of the dictionary learning problem in these
terms were Olshausen and Field in their seminal 1996 paper7 They
were studying human vision, and naturally wondered if most things
we see can be broken-down into component parts, with only a small
percentage of those parts active for any given image.

They took many 8× 8 pixel image patches from natural scenes, and
used them to train their sparse representation — the methods they
used were similar to those discussed in the previous section. Here is
the 64 dimensional orthobasis they got when they ran PCA on the
image patches:

Olshausen and Field, PCA experiment

Notice that this looks pretty similar to a discrete cosine transform.
Here is what they got using sparse dictionary learning on 16 × 16
patches:

7Olshausen and Field, “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images,” Nature Letters, June 1996.
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Olshausen and Field, dictionary learning experiment

Here are some results from the K-SVD paper, which used ∼ 11, 000
8× 8 blocks like this:

AHARON et al.: -SVD: ALGORITHM FOR DESIGNING OVERCOMPLETE DICTIONARIES 4319

Fig. 3. Synthetic results: for each of the tested algorithms and for each noise
level, 50 trials were conducted and their results sorted. The graph labels repre-
sent the mean number of detected atoms (out of 50) over the ordered tests in
groups of ten experiments.

and initializing in the same way. We executed the MOD algo-
rithm for a total number of 80 iterations. We also executed the
MAP-based algorithm of Kreutz-Delgado et al. [37].2 This al-
gorithm was executed as is, therefore using FOCUSS as its de-
composition method. Here, again, a maximum of 80 iterations
were allowed.

D. Results

The computed dictionary was compared against the known
generating dictionary. This comparison was done by sweeping
through the columns of the generating dictionary and finding
the closest column (in distance) in the computed dictionary,
measuring the distance via

(25)

where is a generating dictionary atom and is its corre-
sponding element in the recovered dictionary. A distance less
than 0.01 was considered a success. All trials were repeated
50 times, and the number of successes in each trial was com-
puted. Fig. 3 displays the results for the three algorithms for
noise levels of 10, 20, and 30 dB and for the noiseless case.

We should note that for different dictionary size (e.g.,
20 30) and with more executed iterations, the MAP-based
algorithm improves and gets closer to the -SVD detection
rates.

VI. APPLICATIONS TO IMAGE PROCESSING—PRELIMINARY

RESULTS

We carried out several experiments on natural image data,
trying to show the practicality of the proposed algorithm and the
general sparse coding theme. We should emphasize that our tests
here come only to prove the concept of using such dictionaries
with sparse representations. Further work is required to fully

2The authors of [37] have generously shared their software with us.

Fig. 4. A collection of 500 random blocks that were used for training, sorted
by their variance.

(a) (b) (c)

Fig. 5. (a) The learned dictionary. Its elements are sorted in an ascending order
of their variance and stretched to maximal range for display purposes. (b) The
overcomplete separable Haar dictionary and (c) the overcomplete DCT dictio-
nary are used for comparison.

Fig. 6. The root mean square error for 594 new blocks with missing pixels
using the learned dictionary, overcomplete Haar dictionary, and overcomplete
DCT dictionary.

deploy the proposed techniques in large-scale image-processing
applications.

1) Training Data: The training data were constructed as a
set of 11 000 examples of block patches of size 8 8 pixels,
taken from a database of face images (in various locations). A
random collection of 500 such blocks, sorted by their variance,
is presented in Fig. 4.

2) Removal of the DC: Working with real image data, we
preferred that all dictionary elements except one have a zero
mean. The same measure was practiced in previous work [23].
For this purpose, the first dictionary element, denoted as the DC,
was set to include a constant value in all its entries and was not
changed afterwards. The DC takes part in all representations,
and as a result, all other dictionary elements remain with zero
mean during all iterations.

3) Running the -SVD: We applied the -SVD, training a
dictionary of size 64 441. The choice came from
our attempt to compare the outcome to the overcomplete Haar
dictionary of the same size (see the following section). The coef-
ficients were computed using OMP with a fixed number of coef-

Aharon et al, example image patches

They trained a 64× 441 overcomplete dictionary — the elements are
on the left below:

AHARON et al.: -SVD: ALGORITHM FOR DESIGNING OVERCOMPLETE DICTIONARIES 4319

Fig. 3. Synthetic results: for each of the tested algorithms and for each noise
level, 50 trials were conducted and their results sorted. The graph labels repre-
sent the mean number of detected atoms (out of 50) over the ordered tests in
groups of ten experiments.

and initializing in the same way. We executed the MOD algo-
rithm for a total number of 80 iterations. We also executed the
MAP-based algorithm of Kreutz-Delgado et al. [37].2 This al-
gorithm was executed as is, therefore using FOCUSS as its de-
composition method. Here, again, a maximum of 80 iterations
were allowed.

D. Results

The computed dictionary was compared against the known
generating dictionary. This comparison was done by sweeping
through the columns of the generating dictionary and finding
the closest column (in distance) in the computed dictionary,
measuring the distance via

(25)

where is a generating dictionary atom and is its corre-
sponding element in the recovered dictionary. A distance less
than 0.01 was considered a success. All trials were repeated
50 times, and the number of successes in each trial was com-
puted. Fig. 3 displays the results for the three algorithms for
noise levels of 10, 20, and 30 dB and for the noiseless case.

We should note that for different dictionary size (e.g.,
20 30) and with more executed iterations, the MAP-based
algorithm improves and gets closer to the -SVD detection
rates.

VI. APPLICATIONS TO IMAGE PROCESSING—PRELIMINARY

RESULTS

We carried out several experiments on natural image data,
trying to show the practicality of the proposed algorithm and the
general sparse coding theme. We should emphasize that our tests
here come only to prove the concept of using such dictionaries
with sparse representations. Further work is required to fully

2The authors of [37] have generously shared their software with us.

Fig. 4. A collection of 500 random blocks that were used for training, sorted
by their variance.

(a) (b) (c)

Fig. 5. (a) The learned dictionary. Its elements are sorted in an ascending order
of their variance and stretched to maximal range for display purposes. (b) The
overcomplete separable Haar dictionary and (c) the overcomplete DCT dictio-
nary are used for comparison.

Fig. 6. The root mean square error for 594 new blocks with missing pixels
using the learned dictionary, overcomplete Haar dictionary, and overcomplete
DCT dictionary.

deploy the proposed techniques in large-scale image-processing
applications.

1) Training Data: The training data were constructed as a
set of 11 000 examples of block patches of size 8 8 pixels,
taken from a database of face images (in various locations). A
random collection of 500 such blocks, sorted by their variance,
is presented in Fig. 4.

2) Removal of the DC: Working with real image data, we
preferred that all dictionary elements except one have a zero
mean. The same measure was practiced in previous work [23].
For this purpose, the first dictionary element, denoted as the DC,
was set to include a constant value in all its entries and was not
changed afterwards. The DC takes part in all representations,
and as a result, all other dictionary elements remain with zero
mean during all iterations.

3) Running the -SVD: We applied the -SVD, training a
dictionary of size 64 441. The choice came from
our attempt to compare the outcome to the overcomplete Haar
dictionary of the same size (see the following section). The coef-
ficients were computed using OMP with a fixed number of coef-

Aharon et al, learned overcomplete dictionary (left)
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In the middle are the Haar wavelet and discrete cosine basis functions
for reference.
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