Structured Matrix Factorization

Many problems in machine learning and signal processing can be
formulated as follows:
Given a d X n matrix X, find a d X r matrix B and a r X n matrix
C such that

X ~ BC,

under the constraints that B and C have some kind of structure.

To begin, let’s review a fundamental result in modern linear algebra:

Eckart-Young Theorem: Let X be a d X n matrix with SVD
X =UXV". Then the best rank-r approximation to X is

minimize || X —Y||% subject to rank(Y) =1,
Y cRdxn
13 X
Y =U,%, V.,
where 3, is the r X r diagonal matrix containing the r largest sin-
gular values of X, U, is a d X r matrix whose columns are the

corresponding left singular vectors, and V', contains the correspond-
ing right singular vectors.

Proof of the above is more involved than you might think, but nev-
ertheless, it is a classical result. We can also replace the Frobenius
norm || - |5 (sum of the squares of the singular values) in the opti-
mization above with the spectral norm || - || (largest singular value).
We could also re-write the program as

minimize || X — BC||7.
BeRdxr
CGRT’XTL
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The rank constraint is now implicit in the size of the matrices B and
C'. A solution to the above is then

B=UZXY"? cC=x"Vv"

Of course, this solution is not unique, as we may divvy up the 2, in
an arbitrary way, i.e.

B=U,3%,, C=V"
or even apply a general invertible r X r matrix to the left and right:
B=UZX"A, C=A"'2?VvT

etc.

Although we did not explicitly enforce this for the optimization, it is

casy (and most natural) to make the factors B and C have orthog-
onal columns and rows, respectively.

What are we doing when we perform an approximation of this kind?
Suppose that the columns of X are data points in R%:

X =[x x -+ x,)
and suppose that there exists a small r < min(d, n), such that

X ~ BC

= | B c, C - C,
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i.e. ; = Be;. This means that each x; is a different (linear) com-
bination (specified by the entries in ¢;) of a small number of latent
features (specified by the columns of B).

Example: Eigenfaces

The data points x; are d-pixel images' of faces (d is on the order of
thousands):

ol B ol sl R

gl 2 w-r— r"

:’ _guvuﬁ'ﬂzmmm Shaeh

There are many such images (n on the order of 1000s), but X can
be approximated very well with rank r = 200. Here are the columns

of B:

"Example from http://kixor.net/school/2008spring/comp776/
assn3/.
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Example: Latent Semantic Indexing

LSI is used to automatically group documents together by their se-
mantic content. Here, the data we are given is a document term ma-
triz. We parse n documents (encyclopedia/wikipedia entries, news-
paper article, etc.) and count the number of times d different words
appear; the tally for word k in document i is the entry Xk, i|:

Xk, i] = # times word k appeared in document 3.

The rows of X tend to be correlated, so we can approximate X =
BC for r < min(d,n). This means that word frequency counts in
a document are basically a linear combination of a small number of
“feature counts” given by the columns of B.

But in both these cases, it is hard to interpret what the latent factors
really tell us about the data, other than being able to assist us in
some simple dimensionality reduction. This is because we have not
enforced the proper structure on the factors B, C.
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Non-negative matrix factorization

If we constrain the factors to have positive entries, we get different
(and perhaps more interesting) results:

minimize | X — BC||z, B >0, C > 0. (1)
BeRdxr
CERT‘Xn

The idea behind this is that in many cases (including the face and
LST examples above), what we are really looking for is a mixture of

positive factors. This problem is called non-negative matriz fac-
torization (NNMF).

Solving (1) is much more involved than in the unconstrained case.
Not only is there no closed-form solution, but the optimization is
non-convex, and comes with all the complications there-of.

But notice that if we fix one the factors, say B = B'”. then the
program
minimize | X — BYC|%, C >o.

CeRr>n
is separable by column; we can solve

mini%lize |z, — B”¢]||? subject to ¢ >0,
c;ER"

for + = 1,...,n independently. Each of these subproblems is a
quadratics program, and so it solvable with off-the-shelf software.
The same thing is true if we pin down C = C'” and optimize over
B. So NNMF algorithms typically alternate back and forth between
solving for B and solving for C'.
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Here are some interesting results from the original paper on NNMF?

Faces:

Original
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The top is essentially the eigenfaces experiment, but where we restrict
the factors (B) and mixture coefficients (C') to be positive. Notice
that, as compared to the standard PCA experiment below it, that
the factors actually look like facial features.
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’Lee and Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, October 1999.
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Latent semantic indexing:

Here is an example from the same article for LSI.

n = 30,991 articles from an encyclopedia were parsed,
d = 15, 276 words counted

court president
govemment served Encyclopedia entry:
council governor 'Constitution of the

United States'

president (148)
congress (124)

power (120)
X - united (104)
flowers disease | constitution (81)

U

leaves behaviour

plant glands

perennial contact
symptoms

skin
pain
infection

metal process method paper

person example time

Now the columns of B can be interpreted as groupings of words that
appear together frequently.

On the top right, we see example weights for four different factors
that decomposed the (word count of) the US Constitution ... the two
factors (columns of B) on top, learned while training on a separate
data set, were given significant weights (entries in ¢), while the two
factors on bottom had very small weights.

The example on bottom shows the words associated with the two
factors whose entry in the row corresponding to the word ‘lead” was
the greatest.
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Dictionary Learning

The dictionary learning problem is to (approximately) factor a d x n
matrix X as

X ~ BC,

where B is d x d and orthonormal (or at least invertible), and C' is
d x n and sparse. That is, the vast majority of the entries in C' are
NON-ZEero.

2
&
o
S
3
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The idea is that we are looking for a basis (or dictionary) B such
that every data point @; can be written as a superposition of a small
number of columns of B. If we restrict the columns of B to be or-
thonormal, B B = I, then we can interpret this problem as a search
for a sparsifying transform — we want a B so that the transform
coefficients ¢; = B"x; have as much of their energy compacted onto
a small set as possible.
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Sparsity

Fixed (i.e. unlearned) sparsifying transforms play a role in many
places in signal and image processing.

image x; with n pixels wavelet coefficients

chirp signal «; in time domain Gabor domain

jr il

{

Sparse transforms gives us a natural way to compress signals (fewer
numbers to code) and to remove noise (important coefficients “stick
up” past the noise floor).

Let’s make some of this more precise. If B* B = I then then columns
bi, ..., b, for an orthobasis for R?, meaning binj = ( for ¢ # j and
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for any vector @, we can write

d
x =) clklb;, for c[k]=b.x.

k=1

When we say a vector @ is sparse in the B-domain, we mean that

x~ Y clklby,

for some small index set Z, |Z| < d°. If we set & = 3,7 c[k]by,
then by the generalized Parseval theorem, we know

|z — a5 =) [c[k],

kT

and so if the coefficients outside of Z are all very small, this approx-
imation error will be very small.

Note that this type of model is inherently nonlinear, as the Z above
adapts to the vector & (i.e. which coefficients are important is dif-
ferent from signal to signal). Suppose that x; and x, are exactly
s-sparse in that

z =Y alklb, ®=)_ olklby,

kel ke,

for some |Z;| = |Zy] = s. Then the number of non-zero terms in
ax, + bay for a,b € R are located on Z; UZ,, which can be as large
as 2s ... this means that ax; + bxs will not in general be s-sparse.

*We are using the notation |Z| to mean the number of elements in the set
7.
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Sparse approximation

How can we find the best sparse approximation for a vector @ in a
basis B? The following optimization program is one way to pose
this problem. Using the notation |||l = number of non-zero terms
in the vector ¢, we have

minimize ||& — Bel|5 subject to e[|y < s. (2)
ceR?

When B is orthonormal, then
lz — Bells = || B (z — Be)lls = [ly — ¢llz

where y is the vector of transform coefficients of &, y = B @. The
resulting program
minimize |y — cll3 subject to lello < s.
ceR
is easy to solve — simply take

A

7 = locations of s largest magnitude terms in y,

then R
. ylk], keZ,
k| = -
g {Q kT,

When B is not orthonormal but is invertible (so the columns of B
form a basis for R? but not an orthobasis), then

|z — Bell» # | B (z — Be)|l.,

and so translating the optimization program into the B domain is
not possible. In fact, in this case solving (2) exactly is NP-hard.
But there are many heuristics for solving (2) in the general case
— one approach is to replace the || - || constraint with the convex
|lc|]li < 7 for some appropriate 7. There are also simple greedy
algorithms (most notable of which is orthogonal matching pursuit
(OMP) approximate solutions.
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Dictionary Learning Formulation

Back to the dictionary learning problem; given examples x4, . .., @, €
R?, we want to find a d x d basis (dictionary) matrix B and a sets
of sparse expansion coefficients ¢y, . . ., ¢, € R? so that

Xy Ly - I,| ~ B cCi C -+ C,

Let’s start by codifying this as an optimization program. We want
to solve

minimize | X —BC||5 subject to |lcillo<s,i=1,...,n. (3)

The functional® is simply the sum of all the approximation errors for
each of the data points:

2
n

| X - BC|r =)

1=1

)
2

d
k=1

while the constraints ensure that only s terms are non-zero in each
of the ¢;.

The optimization program (3) is nonconvex, and impossible to solve
exactly under anything but ideal conditions. One class of techniques
for solving it alternate between fixing B and optimizing over C,
then fixing C' and optimizing over B. FEach of these problems is
more tractable.

‘Recall that the Frobenius norm of a matrix squared |[|M|3% is simply the
sum of all the squares of the entries in the matrix.
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In fact, let’s consider the case” where we restrict B'B = I. With
orthonormal b, both of the subproblems have known solutions. With
B fixed, we are solving

minimizez |z, — Beil|; subject to ||cillo <5, i=1,...,n.

With B fixed, the above is really n decoupled problems of the form

minimize |x; — Bei||3 subject to ¢y < s.

C;

We have already seen that the solution to this problem is to take ¢;
to contain the s largest magnitude coefficients in B a;, and be zero
elsewhere.

Now suppose that the ¢; are fixed, and we want to solve

minimize | X — BC|5 subjectto B'B=1.

This is known as the orthogonal Procrustes problem, and as you
might guess by this point, its solution involves solving another eigen-
value/singular value problem. Note that

IX = BC|p = | X[z + | BC|r — 2(X, BC)r
= [ X[z + [Cl[y — 2(X, BC)r
= I X|[I7 + ICl[7 — 2(XC", B)r

and so since the first two terms do not involve B, the problem is
equivalent to

max}gmize(XC’T, B)p subjectto B'B=1.

’For more details on this case, see O. Sezer, Data Driven Transform Opti-
mizations..., Georgia Tech ECE PhD Thesis, 2011.
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Taking the SVD of XC' = UZ V™, we know
<XCT7 B>F — <UZVT7 B>F - <27 UTBV>F

Since U, B and V are all d x d and orthonormal, so is U BV..

Thus, the program is equivalent to

maxizmize<2, Z)p, subjectto Z'Z =1,

where 3 is diagonal with X[z, 4] > 0. Also, since

(=, Z)p =) _3S[i,i] Z[i, i,

1=1

and Zi,i] < 1 (since the sum of the squares in each column/row
must be equal to 1), we know that (¥, Z)p is maximized when

A~

Zli,i)=1forallt=1,...,d, i.e. for Z = 1. This means

B=UV",

Simple Dictionary Learning, Orthogonal Case:
e initialize orthonormal dictionary B (e.g. B” =1)
o for y=1,2,...

— solve for CY) by keeping the s largest magnitude terms
in each column of BY™YT X and setting the rest to
7€10;

— take SVD of XCY' = UXV" and set BY = UV",
e repeat until || BY — BY™Y||, is appropriately small
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The case of learning non-orthogonal B is also of interest, and many
times results in a much sparser representation. Removing the con-
straint definitely changes the iterations, as the fact that B'B =1
played a role in the derivation of both steps above. In fact, significant
gains can be had by making B overcomplete, meaning that it has
more columns than rows.

The starting point for the non-orthogonal problem is the k-SVD al-
gorithm®. We will not present the details here, the interested student
can see the reference below, but the algorithm has two basic steps:

e With BV™Y fixed, solve a series of n sparse approximation
problems to get C'Y. These programs have form like (2) with
non-orthogonal B, so heuristics (e.g. OMP or ¢; minimization)
are used to solve them.

e The dictionary B is updated one column at a time — to do
the update, we look at the error for all the data points that
use this column, then choose the new column in such a way
that this error is reduced as much as possible. Like everything
in unsupervised learning, this is done by finding a leading sin-
gular vector. The coefficients are also updated in place as the
corresponding columns change.

Again, details can be found in the footnoted reference.

SAharon et al. “K-SVD: An algorithm for designing overcopmlete dictio-
naries for sparse representation,” IEEE Trans. Sig. Proc., November 2006.
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Examples

The first people to think of the dictionary learning problem in these
terms were Olshausen and Field in their seminal 1996 paper’ They
were studying human vision, and naturally wondered if most things
we see can be broken-down into component parts, with only a small
percentage of those parts active for any given image.

They took many 8 x 8 pixel image patches from natural scenes, and
used them to train their sparse representation — the methods they
used were similar to those discussed in the previous section. Here is
the 64 dimensional orthobasis they got when they ran PCA on the
image patches:

o ]
LRSS0
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=
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Olshausen and Field, PCA experiment

Notice that this looks pretty similar to a discrete cosine transform.
Here is what they got using sparse dictionary learning on 16 X 16
patches:

"Olshausen and Field, “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images,” Nature Letters, June 1996.
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Olshausen and Field, dictionary learning experiment

Here are some results from the K-SVD paper, which used ~ 11,000
8 X 8 blocks like this:
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Aharon et al, example image patches

They trained a 64 x 441 overcomplete dictionary — the elements are
on the left below:
RSPSLELL Y
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VT ,

Aharon et al, learned overcomplete dictionary (left)
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In the middle are the Haar wavelet and discrete cosine basis functions
for reference.
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