
Structured matrix factorizations

An extremely large variety of interesting and important 
problems in machine learning can be formulated as:

Given a            matrix     , find a           matrix     and a 
matrix      such that

under the constraints that     and     have some kind of 
structure

Examples we have seen so far have included PCA, MDS, and 
extensions like kernel PCA, Isomap, LLE, etc.

In these examples, the only structure we have enforced has 
been orthonormality – this is not always quite enough…



Example: Eigenfaces

Fill up the columns of      with vectorized images of faces

Given thousands of such faces, we can still approximate 
very well as a low-rank matrix (e.g., rank 200) 

Given a low-rank factorization                , the columns of    
represent a small number of “eigenfaces” which we can use 
to build up any face



Example: Eigenfaces



Example: Topic modeling

Topic modeling refers to a broad class of algorithms that to 
automatically sort documents into groups which share a 
common theme/topic based on their semantic content

The input to these algorithms is the familiar “bag of words” 
representation, i.e., the matrix      with entries

The rows of     tend to be correlated, so we can typically 
approximate                 as a low-rank matrix

This expresses each document as a combination of the 
columns of     , each of which ideally each represent a 
coherent “topic” 

# of times word    appeared 
in document



Non-negative matrix factorization

In both of the two previous cases, it is actually very hard to 
interpret what the latent factors tell us about the data, 
because we are not enforcing the proper structure on

If we instead constrain          to have non-negative entries, we 
get different (and perhaps more interesting) results:

The idea behind this is that by forcing the factors to be 
positive, we must build up     only by adding components 
(instead of relying on potentially complicated cancellations)

This will hopefully make it easier to interpret the results



Solving the NNMF problem

Solving this problem is much more involved than the 
unconstrained case

– no closed form solution (the SVD does not help us)
– non-convex optimization problem

However, notice that if we fix                  , then the program

is column separable, i.e., for each    we can separately solve



NNMF and alternating minimization

This is a quadratic program that is easily solvable using off-
the-shelf software

The same is true if we fix                   and optimize over

Alternating minimization algorithm

Input:      together with initial guess for 

1. Compute          treating                  as fixed

2. Compute              treating

3. Iterate until convergence



Example: NNMF for faces



Example: NNMF for topic modeling



Dictionary learning

In dictionary learning, our goal is again to form a 
factorization of the form                , but now with the 
structure that      is sparse

The idea is that we are searching for a basis or dictionary     
such that every      can be expressed as a weighted 
combination of just a few columns of



Sparsity

nonzero
entries

samples

large
Fourier
coefficients



Sparsity

nonzero
entries

pixels
large
wavelet
coefficients



Sparsity as a nonlinear model

Sparse models are fundamentally different than subspace 
models like PCA

We may use only             coefficients for each    , but which
coefficients changes depending on

Sparsity is really a union of subspaces model      



Sparse approximation

Before we discuss dictionary learning, let us first consider the 
problem of finding a sparse representation for a given 

One way to pose this problem is via the optimization problem

If      is orthonormal, then

In this case, solving the problem is easy
Simply compute
and set             



Sparse approximation

In the more general setting where      is not orthonormal, this 
problem is not so easy to solve

NP-hard in general

This is important in practice, since typically one can obtain  
that do a much better job of “sparsifying” our data if we 

allow them to be overcomplete (more columns than rows)

However, there are some good heuristics which also have 
strong theoretical justification when      satisfies some nice 
regularity conditions

LASSO:

Greedy algorithms: orthogonal matching pursuit



Dictionary learning formulation

Getting back to dictionary learning, the problem we would 
like to solve can be stated as the optimization problem

Just as with NNMF, this is nonconvex and extremely difficult 
to solve exactly

However, we can take the same approach as before and 
consider an alternating minimization strategy to tackling this:
• fix     and optimize over  
• then, fix     and optimize over  
• repeat until convergence



K-SVD algorithm

There are many variants of this approach, but perhaps the 
most popular is the K-SVD algorithm

Input:     ,         , desired sparsity level

1. With          fixed, solve a series of    sparse approximation 
problems using orthogonal matching pursuit to obtain

2. With          fixed, solve the optimization problem

3. Iterate until convergence

The optimization problem in step 2 can be broken into 
independent problems for each column of    , and can be 
solved by taking an SVD



Example: Natural images

The first people to look at dictionary learning in this way 
were Olshausen and Field in a seminal 1996 paper

– Olshausen gave a talk recently here at Georgia Tech

They were studying human vision, and wondered if it might be 
the case that the human visual system is actually trained to 
produce sparse representations of natural images

They formed a large collection of patches of images from 
natural scenes

Compared PCA to dictionary learning



Example: Natural images

PCA

Learned dictionary

very similar to DCT

actually matches
experimental data
for neural responses
in human/animal
visual systems



Example: Natural images

The K-SVD algorithm provides similar results:

Example image patches

K-SVD dictionary  Haar wavelets           DCT        a



Missing and corrupted data

Let                               denote a            “data matrix”

Recall that we can compute the principal components simply 
by computing the singular value decomposition

The principal eigenvectors are the first     columns of

The inherent assumption in PCA is that      is (at least 
approximately) low rank 

– i.e., most of the singular values are close to zero

What happens if some of the entries in      are missing?



PCA with missing data

Given a set      of indices, we get to observe                , and 
we would like to recover

– also known as matrix completion

– can also be extended to the case where some of the entries 
have been corrupted (i.e., the set      is unknown) under the 
name of robust PCA



Outliers

What happens if there are outliers in our data set?

PCA can be extremely sensitive to outliers/corruptions



Modeling outliers

In the presence of outliers, our data matrix     is no longer 
low-rank because some of the entries have been corrupted

low-rank corruptions



Robust PCA

The problem of robust PCA boils down to a separation 
problem

Given                    , determine     (and hence    )

Is this possible?

Example

If I tell you                   , what are    and    ?

We need to make some assumptions on     and     to make this 
problem tractable 

• is low-rank (i.e., PCA even makes sense)

• is sparse (only a few entries are corrupted)



How to perform separation/recovery?

Matrix completion

Robust PCA

What’s the problem with these approaches?
– nonconvex, intractable, NP hard, etc. 

There are alternating minimization approaches to both, or…



Convex relaxation

We have already seen that an effective proxy for          that 
encourages sparsity is the “convex relaxation” 

What about a convex relaxation of                ?

Observe that if we let     denote the vector containing the 
singular values of    , then 

What if we replace                with                        ?

It turns out that          is indeed a convex function, and hence 
something we can potentially optimize efficiently

– typically called the nuclear norm or Shatten 1-norm

– we can write



Convex programs for separation/recovery

Matrix completion

Robust PCA



Application: Collaborative filtering

The “Netflix Problem”

Rank 1 model:

Rank 2 model:

how much user    likes movie   i j

how much user    likes romantic movies i

amount of romance in movie   j

how much user    likes zombie movies i

amount of zombies in movie   j





More generally, we might have

Low-rank models are commonly applied to all kinds of 
“response” data

– surveys (census)

– standardized tests

– market research

If we have lots of questions and lots of participants
– we might not be able to ask all participants all possible 

questions

– we might need to deal with malicious responses

Application: Response data

response from person    to questioni j



Application: Multidimensional scaling

Suppose that     represents the pairwise distances between a 
set of objects, i.e.,

Recall from before that in this case 
where    is the dimension of the  

If we have a large number of objects, we may not be able to 
observe/measure all possible pairwise distances

If these distances are calculated from similarity judgments by 
people, we may have outliers/corruptions



Application: Removing face illumination

[Candès et al., 2009]



Application: Background subtraction

[Candès et al., 2009]



When does it work?

In general, we cannot always guarantee that we can solve the 
separation/recovery problems

Examples where separation/recovery might be impossible:

• too many of the entries are corrupted
– in this case our corruptions are not really sparse

• we do not observe enough of the entries
– e.g., we do not even observe some rows/columns

• the low-rank portion of the matrix is also sparse
– we will not be able to separate it from sparse corruptions

– we might not observe any of the relevant entries 



How much data do we need?

Consider the matrix completion problem

To recover a matrix with rank   , how many observations do 
we expect to need?

If     is           , then there are

degrees of freedom 

We can reasonably expect that we will need to have

In fact, we need a little bit more:



Incoherence

We also need to avoid the case where      is sparse

We will assume that      satisfies the incoherence condition:

If                      , the incoherence condition with parameter     
states that



Matrix completion

Theorem

Suppose that     has rank     and satisfies the incoherence 
condition.  If we observe     entries of      sampled uniformly 
at random, then as long as

we will recover      exactly with high probability

See papers by Recht, Candès, Tao, and many others



Robust PCA

Theorem

Suppose that                      where      satisfies the 
incoherence property,

and the support set of     is chosen uniformly at random from 
all sets of size                       .  

Then if we set                         we achieve exact separation of
and      with high probability.

See papers by Candès, Li, Ma, and Wright, and others


