
Density estimation

In density estimation problems, we are given a random 

sample                            from an unknown density

Our objective is to estimate 

?



Applications

Classification 

• If we estimate the density for each class, we can simply 

plug this in to the formula for the Bayes’ classifier

• Density estimation (for each feature) is the key component 

in Naïve Bayes

Clustering

• Clusters can be defined by the density: given a point   , 

climb the density until you reach a local maximum

Anomaly detection

• Given a density estimate         , we can use the test

to detect anomalies in future observations



Kernel density estimation

A kernel density estimate has the form

where     is called a kernel

• A kernel density estimate is nonparametric

• Another name for this is the Parzen window method

• The    parameter is called the bandwidth

• Looks just like kernel ridge regression, but with equal 

weights

• Note that     does not necessarily need to be an inner 

product kernel 



Example



Kernels

In the context of density estimation, a kernel should satisfy

1.

2.

3. for some 

Examples (in    )

• Uniform kernel

• Triangular kernel

• Epanichnikov kernel

• Gaussian

• …



Kernel bandwidth

The accuracy of a kernel density estimate depends critically 

on the bandwidth



Setting the bandwidth - Theory

Theorem

Let           be a kernel density estimate based on the kernel

Suppose              is such that

• as

• as

Then

as             , regardless of the true density    

Proof: See Devroye and Lugosi, Combinatorial Methods in 

Density Estimation (1987)



Setting the bandwidth - Practice

Silverman’s rule of thumb

If using the Gaussian kernel, a good choice for     is

where    is the standard deviation of the samples

How can we apply what we know about model selection to 

setting    ?

• Randomly split the data into two sets

• Obtain a kernel density estimate for the first

• Measure how well the second set fits this estimate

– e.g., compute another kernel density estimate on the second 

set and calculate the KL divergence between the two

• Repeat over many random splits and average



Density estimation is hard…

Kernel density estimation works fairly well if you have lots of 

data in extremely low-dimensional data

– e.g., 1 or 2 dimensions

Fortunately, it is not strictly necessary in many applications…



Clustering



Example



Formal definition

Suppose                                

The goal of clustering is to assign the data to disjoint subsets 

called clusters, so that points in the same cluster are more 

similar to each other than points in different clusters

A clustering can be represented by a cluster map, which is a 

function

where     is the number of clusters 



Choose     to minimize

where

Note that     is assumed fixed and known

is sometimes called the “within-cluster scatter”

-means criterion



Within-cluster scatter

It is possible to show that 

average distance between

and all other points

in the same cluster



How many clusterings?

How many possible cluster maps      do we need to consider?

Solutions to this recurrence (with the natural boundary 

conditions) are called Stirling’s numbers of the second kind

Examples

–

–

# of clusterings of    objects into     clusters



There is no known efficient search strategy for this space

Can be solved (exactly) in time  

Completely impractical unless both    and     are extremely 

small

• e.g.,                            already results in 

More formally, minimizing the  -means criterion is a 

combinatorial optimization problem (NP-hard)

Instead, we resort to an iterative, suboptimal algorithm

Minimizing the -means criterion



Another look at -means 

Recall that we want to find

Note that for fixed

Therefore, we can equivalently write



An iterative algorithm

This suggests an iterative algorithm

1. Given    , choose       to minimize  

2. Given      , choose to minimize  



-means clustering algorithm

The solutions to each sub-problem are given by

1.

2.

Algorithm

Initialize

Repeat until clusters don’t change

–

–



Initialization

Traditionally, the algorithm is typically initialized by setting 

each       to be a random point in the dataset 

However, depending on the initialization, the algorithm can 

get stuck in a local minimum

One can avoid this by:

• repeating for several random initializations

• initialize by sequentially selecting random points in the 

dataset, but with a probability depending on how far the 

point is from the already selected        :    -means ++



Clusters are “nearest neighbor” regions or Vornoi cells 

defined with respect to the cluster means

Cluster boundaries are formed by the intersections of 

hyperplanes

-means will “fail” if clusters are nonconvex

Cluster geometry



Remarks

• Algorithm originally developed at Bell Labs as an approach 

to vector quantization

• If we replace the      norm with the     norm in our function     

, then

– the geometry of our Vornoi regions will change

– the “center” of each region is actually calculated via the 

median in each dimension

– results in -medians clustering



Model selection for    -means

How to choose     ?

Let                be the within-cluster scatter based on   clusters  

If the “right” number of clusters is     , we expect

• for             ,                                        will be large

• for             ,                                        will be small

This suggests choosing     to be near the “knee” of the curve



Another take on    -means

I have followed the standard development of the     -means 

clustering algorithm, but there is another way to view this 

algorithm…

as simply another instance of structured matrix factorization

where

and     has exactly one “1” per column (the rest being zero)


