
-means clustering algorithm

The solutions to each sub-problem are given by

1.

2.

Algorithm

Initialize

Repeat until clusters don’t change

–

–



Beyond    -means clustering

In    -means clustering, by measuring the within-cluster 

scatter as

we are implicitly assuming that each cluster is roughly 

spherical in shape

This is probably unrealistic

But if we don’t even know what the clusters are

we definitely don’t know how they are shaped…



Clustering with Gaussian mixture models

One way to extend the basic idea behind    -means clustering 

to allow for more general cluster shapes is to assume 

• the clusters are elliptical

• each cluster can be modeled using a multivariate 

Gaussian density

• the full data set is modeled using a Gaussian mixture 

model (GMM)

We can then perform clustering based on a maximum 

likelihood estimation of the GMM



Gaussian mixture models

Recall the multivariate Gaussian density

where

A random variable     follows a Gaussian mixture model if its 

density has the form

where



Example

mixture

not a mixture



Simulating a GMM

Suppose we know

How can we simulate a realization of the GMM?

Basic idea

1. Choose one of the “components” at random, weighted 

according to       

– i.e., 

2. Draw a realization from  

Why does this work?



Simulating a GMM

Let                           be a discrete random variable such that

Generate     as follows:

1. Generate a realization   of  

2. Generate   

The density of     generated this way is



GMMs for clustering

The variable    is called a (hidden) state variable

We can imagine that every realization from a GMM is actually 

associated with a (hidden) realization of the state variable

In the context of clustering, our objective is to estimate the 

parameters of the GMM and  define clusters based on the 

estimated means/covariances

That is, we assume                                    and reduce 

clustering to a parameter estimation problem

Of course, we have to do all of this without observing the 

hidden states                  associated with



Maximum likelihood estimation

We will approach this problem from the perspective of 

maximum likelihood estimation

• : arbitrary density parameterized by  

• iid realizations                                    denoted by

The likelihood function of    is 

The maximum likelihood estimator (MLE) is



Example

Suppose

Computationally, it is more convenient to maximize the 

log-likelihood



Example

By taking the gradient of               and setting this to zero, we 

obtain that the MLE of the parameters is given by 



MLE for a GMM

Now consider a GMM and assume that     is known

The likelihood function is

and the log likelihood is

There is (unfortunately) no known closed-form maximizer



State variables

Just for kicks, let’s suppose that we actually also had access 

to realizations of the state variables associated with

Notation:                           ,                              , 

The likelihood function is given by



MLE with state variables

In this case the log-likelihood is given by

Thus, we can maximize with respect to each                

independently from the rest of the components



MLE with state variables

To solve

we can use Lagrange multipliers

The Lagrangian is



MLE with state variables



Incomplete data

The combined data            is sometimes called the “complete 

data”

In general, “complete data” usually refers to the combination 

of what we observe together with the unobserved data that 

we would need in order to make the MLE tractable

Unfortunately, we never have the complete data, and so we 

must figure out how to infer the “missing data” in order 

calculate the MLE



Define the “indicator” variable

The complete data log-likelihood can be written as

MLE with “incomplete data”



Expectation-Maximization (EM)

The expectation-maximization (EM) algorithm is an iterative 

algorithm that produces a sequence                        of 

parameter estimates

E-step

Given       , compute the expected complete data log-

likelihood:

In our case

where



E-step for GMMs

In the E-step we need to compute

Bayes’ rule



Expectation-Maximization (EM)

M-step

Given the expected complete data log-likelihood, compute 

the maximum likelihood estimate

expected 

complete data

log-likelihood

estimate of

expectation

maximization



M-step for GMMs

Maximizing 

with respect to                                          yields



EM algorithm for GMMs

Initialize 

Repeat unit termination criterion satisfied

E-Step: Compute

M-Step: Compute



Initialization and termination

In general, the likelihood has many local maxima, so a good 

initialization of the algorithm is critical

A good initialization for EM in the case of GMM is

Possible termination criteria are to stop iterating when

or

a randomly selected 
(sampled without

replacement)

the sample covariance



Defining clusters

Recall that 

A reasonable “hard” assignment of points to clusters is given 

by

Alternatively, one may simply take             as a “soft” 

assignment that expresses the “affinity” of      for cluster



Example: Eruptions of “Old Faithful”



EM in general

Nothing in the EM algorithm as we have stated it is specific to 

GMMs

EM is actually an extremely general algorithm for computing 

ML/MAP estimators 

Applies whenever having knowledge of certain “hidden 

variables” renders an ML/MAP estimator tractable

See Statistical Analysis with Missing Data by Little and Rubin 

(2002) for an in-depth discussion of other applications



Convergence of EM

Theorem

For each

A proof based on Jensen’s inequality is available in Hastie, 

Tibshirani, and Friedman

The convergence rate is also of interest

It is typically linear, but with a rate that depends on the 

proportion of observed data



Connection to    -means

Consider a GMM where each                  for some fixed

The EM algorithm for computing the MLE of                and

is to iterate 

When             ,

so the algorithm reduces to    -means 


