
Decision trees

A decision tree is a method for classification/regression that 
aims to ask a few relatively simple questions about an input

and then predicts the associated output

Decision trees are useful to a large degree because of their 
simplicity and interpretability

The resulting output rule is something that can easily be 
inspected and interpreted by hand… something that is not 
really the case with most algorithms

We will also see later that decision trees form a useful 
building block for other more sophisticated algorithms

Hypothetical example

Suppose we are given a dataset where the     are 7-
dimensional feature vectors with features 

1. Undergraduate GPA (4.0 scale)

2. Quantitative GRE score (130-170)

3. Verbal GRE score (130-170)

4. Analytical Writing GRE score (0-6)

5. Undergraduate institution reputation (0-100)

6. Statement of purpose evaluation (0-100)

7. Letter of recommendation evaluation (0-100)

The labels for this dataset are:

Example decision tree 

Y N

Y N Y N

Y N Y N

Y N Y N

Generalizations

Decision trees can be applied to regression where the labels 
at the “leaf nodes” are real-valued (or real-valued functions)

Other generalizations include:
• splits that involve more than one feature

• Splits involving more than two outcomes

Y N



Binary decision trees

Using multiple features and allowing splits with more than 
two outcomes generally increases the risk of overfitting

We will restrict our attention to binary, single-feature splits

In this case, every (binary) decision tree is associated with a 
partition of the feature space that looks something like this 
example in   

Terminology

• The elements of the partition are called cells

• Recall that a graph is a collection of nodes or vertices, 
some of which are joined by edges

• The degree of a vertex is the number of edges incident on 
that vertex

• A tree is a connected graph with no cycles

When is a tree not a tree? Rooted binary trees

A rooted binary tree is a tree where 
– one vertex, called the root, has degree 2

– and all other vertices have degree 1 or 3

• vertices with degree 1 are called leaf or terminal vertices

• vertices with degree 2 or 3 are called internal vertices



More terminology

• The depth of a vertex is the length to the root

• The parent of a vertex is the neighbor with depth one less

• Two vertices are siblings if they have the same parent

• A subtree is a subgraph that is also a tree

• A rooted binary subtree is a subtree that contains the 
root and is such that if any non-root vertex is in the 
subtree, so is its sibling

A binary decision tree is a rooted binary tree where each 
internal vertex is associated with a binary classifier, and each 
leaf with a label

Learning decision trees

Let      denote the set of all binary decision trees

Given a dataset                                   , it might be tempting 
to pose the learning problem as an optimization problem of 
the form

where     is an appropriate loss function, e.g.,

• 0/1 loss for classification

• squared error loss for regression

Unfortunately, this will lead to massive overfitting

If we grow the tree deep enough, we can usually fit the 
training data perfectly!

Penalized empirical risk minimization

Since deep/complex decision trees tend to overfit, we would 
like to avoid such trees

A natural way to quantify the complexity of a tree is the 
number of leaf nodes, which we denote by

Note that if              , we would very likely be overfitting

The penalized ERM approach is to consider the optimization 
problem

Learning a tree in practice

Unfortunately, this optimization problem is intractable

A two-stage procedure is typically employed in practice

1. Grow a very large tree      in a greedy fashion

2. Prune      by solving

where      is the set of all decision trees based on rooted 
binary subtrees of 



Growing a decision tree

The construction of      follows a simple greedy (looking just 
one step ahead) strategy

1. Start at the root vertex (i.e., the entire feature space)

2. Decide whether to stop growing tree at current vertex
– If yes, assign a label and stop

3. If no, consider all possible ways to split the data in the 
cell corresponding to the current vertex, and select the 
best one

4. For each branch of the split, create a new vertex and go 
to step 2

Implementation

To implement this strategy, we need:

• A list of possible splits

When considering splits based on a single real-valued 
feature, splits have the form 

Since there are only     data points, only at most          
values of    need to be considered for each    

For discrete or categorical features, other simple splits can 
be used, such as

Implementation

To implement this strategy, we need:

• A labeling rule

For classification, we can just assign labels by majority 
vote over data in the cell corresponding to the current 
vertex

For regression, we can just take the average of the     in 
the cell for a piecewise constant approximation
(or least squares fit for piecewise polynomial or other 
approximation)

Implementation

To implement this strategy, we need:

• A rule for stopping splitting

The most common strategy is to just split until each leaf 
vertex contains a single data point

• A rule for selecting the best split

This is the hard part!



Split selection

Let’s focus on binary classification

Suppose      is a leaf vertex at some stage in the growing 
process

We can think of      as also defining a cell in the feature 
space, allowing us to consider

Intuitively, a good split of     will lead to children that are 
more homogenous or pure than 

To define this, we will define a notion of impurity

Impurity measure

Assume the class labels are

Let 

Note that                       defines a probability distribution on 
the labels (i.e., on the probability of getting each label on a 
randomly selected point in    )

An impurity measure is a function          such that

• , with                   iff consists of a single class

• a larger value of          indicates that the distribution 
defined by                      is closer to the uniform 
distribution 

Examples

Entropy:

Gini index:

Misclassification rate:

entropy
Gini index

misclassification
rate

Using the impurity measure

To select the best split, we aim to maximize the decrease in 
impurity

Let      and      be two children of   

Define

The decrease in impurity is

When    is entropy, this is called the information gain



Nonnegativity of decrease in impurity

Proposition

If    is concave as a function of   , then

for all      and       

If    is strictly concave and                and , then 
equality holds if and only if                      , where     is the 
proportion of class 1 in 

Because of this fact, strictly concave impurity measures are 
generally preferred

Note that this generalizes easily to multiclass classification

Proof

Want to show

If we write                       , then we have

Since     and     are assumed to be nonempty,                   and
, and therefore equality holds if and only if     

, in which case                      .

Jensen’s
inequality

Pruning

Pruning the model involves solving the optimization problem:

is additive in the following sense:
For any tree    , let                               be the partition of the 
tree corresponding to the children of the root vertex
Then        

Applying this idea recursively suggests a natural algorithm of 
weakest link pruning. One can also attack this via an 
efficient “bottom up” dynamic programming approach.

Why grow then prune?

Why should we go to the trouble of growing the tree and then 
pruning?

A simpler approach would be to just grow the tree and then 
stop when the decrease in impurity is neglibible

Answer: Ancillary splits

These are splits that have no value by themselves, but enable 
useful splits later on



Remarks

Advantages 
• interpretable

• rapid evaluation

• easily handles
– categorical/mixed data

– missing data

– multiple classes 

Disadvantages
• unstable: slight perturbations of training data can 

drastically alter the learned tree

• jagged decision boundaries


