
Decision trees

A decision tree is a method for classification/regression that

aims to ask a few relatively simple questions about an input

and then predicts the associated output

Decision trees are useful to a large degree because of their

simplicity and interpretability

The resulting output rule is something that can easily be

inspected and interpreted by hand… something that is not

really the case with most algorithms

We will also see later that decision trees form a useful

building block for other more sophisticated algorithms

Hypothetical example

Suppose we are given a dataset where the are 7-

dimensional feature vectors with features

1. Undergraduate GPA (4.0 scale)

2. Quantitative GRE score (130-170)

3. Verbal GRE score (130-170)

4. Analytical Writing GRE score (0-6)

5. Undergraduate institution reputation (0-100)

6. Statement of purpose evaluation (0-100)

7. Letter of recommendation evaluation (0-100)

The labels for this dataset are:

Example decision tree

Y N

Y N Y N

Y N Y N

Y N Y N

Generalizations

Decision trees can be applied to regression where the labels

at the “leaf nodes” are real-valued (or real-valued functions)

Other generalizations include:

• splits that involve more than one feature

• Splits involving more than two outcomes

Y N

Binary decision trees

Using multiple features and allowing splits with more than

two outcomes generally increases the risk of overfitting

We will restrict our attention to binary, single-feature splits

In this case, every (binary) decision tree is associated with a

partition of the feature space that looks something like this

example in

Terminology

• The elements of the partition are called cells

• Recall that a graph is a collection of nodes or vertices,

some of which are joined by edges

• The degree of a vertex is the number of edges incident on

that vertex

• A tree is a connected graph with no cycles

When is a tree not a tree?

Rooted binary trees

A rooted binary tree is a tree where

– one vertex, called the root, has degree 2

– and all other vertices have degree 1 or 3

• vertices with degree 1 are called leaf or terminal vertices

• vertices with degree 2 or 3 are called internal vertices

More terminology

• The depth of a vertex is the length to the root

• The parent of a vertex is the neighbor with depth one less

• Two vertices are siblings if they have the same parent

• A subtree is a subgraph that is also a tree

• A rooted binary subtree is a subtree that contains the

root and is such that if any non-root vertex is in the

subtree, so is its sibling

A binary decision tree is a rooted binary tree where each

internal vertex is associated with a binary classifier, and each

leaf with a label

Learning decision trees

Let denote the set of all binary decision trees

Given a dataset , it might be tempting

to pose the learning problem as an optimization problem of

the form

where is an appropriate loss function, e.g.,

• 0/1 loss for classification

• squared error loss for regression

Unfortunately, this will lead to massive overfitting

If we grow the tree deep enough, we can usually fit the

training data perfectly!

Penalized empirical risk minimization

Since deep/complex decision trees tend to overfit, we would

like to avoid such trees

A natural way to quantify the complexity of a tree is the

number of leaf nodes, which we denote by

Note that if , we would very likely be overfitting

The penalized ERM approach is to consider the optimization

problem

Learning a tree in practice

Unfortunately, this optimization problem is intractable

A two-stage procedure is typically employed in practice

1. Grow a very large tree in a greedy fashion

2. Prune by solving

where is the set of all decision trees based on rooted

binary subtrees of

Growing a decision tree

The construction of follows a simple greedy (looking just

one step ahead) strategy

1. Start at the root vertex (i.e., the entire feature space)

2. Decide whether to stop growing tree at current vertex

– If yes, assign a label and stop

3. If no, consider all possible ways to split the data in the

cell corresponding to the current vertex, and select the

best one

4. For each branch of the split, create a new vertex and go

to step 2

Implementation

To implement this strategy, we need:

• A list of possible splits

When considering splits based on a single real-valued

feature, splits have the form

Since there are only data points, only at most

values of need to be considered for each

For discrete or categorical features, other simple splits can

be used, such as

Implementation

To implement this strategy, we need:

• A labeling rule

For classification, we can just assign labels by majority

vote over data in the cell corresponding to the current

vertex

For regression, we can just take the average of the in

the cell for a piecewise constant approximation

(or least squares fit for piecewise polynomial or other

approximation)

Implementation

To implement this strategy, we need:

• A rule for stopping splitting

The most common strategy is to just split until each leaf

vertex contains a single data point

• A rule for selecting the best split

This is the hard part!

Split selection

Let’s focus on binary classification

Suppose is a leaf vertex at some stage in the growing

process

We can think of as also defining a cell in the feature

space, allowing us to consider

Intuitively, a good split of will lead to children that are

more homogenous or pure than

To define this, we will define a notion of impurity

Impurity measure

Assume the class labels are

Let

Note that defines a probability distribution on

the labels (i.e., on the probability of getting each label on a

randomly selected point in)

An impurity measure is a function such that

• , with iff consists of a single class

• a larger value of indicates that the distribution

defined by is closer to the uniform

distribution

Examples

Entropy:

Gini index:

Misclassification rate:

entropy

Gini index

misclassification

rate

Using the impurity measure

To select the best split, we aim to maximize the decrease in

impurity

Let and be two children of

Define

The decrease in impurity is

When is entropy, this is called the information gain

Nonnegativity of decrease in impurity

Proposition

If is concave as a function of , then

for all and

If is strictly concave and and , then

equality holds if and only if , where is the

proportion of class 1 in

Because of this fact, strictly concave impurity measures are

generally preferred

Note that this generalizes easily to multiclass classification

Proof

Want to show

If we write , then we have

Since and are assumed to be nonempty, and

, and therefore equality holds if and only if

, in which case .

Jensen’s

inequality

Pruning

Pruning the model involves solving the optimization problem:

is additive in the following sense:

For any tree , let be the partition of the

tree corresponding to the children of the root vertex

Then

Applying this idea recursively suggests a natural algorithm of

weakest link pruning. One can also attack this via an

efficient “bottom up” dynamic programming approach.

Why grow then prune?

Why should we go to the trouble of growing the tree and then

pruning?

A simpler approach would be to just grow the tree and then

stop when the decrease in impurity is neglibible

Answer: Ancillary splits

These are splits that have no value by themselves, but enable

useful splits later on

Remarks

Advantages

• interpretable

• rapid evaluation

• easily handles

– categorical/mixed data

– missing data

– multiple classes

Disadvantages

• unstable: slight perturbations of training data can

drastically alter the learned tree

• jagged decision boundaries

