
Decision trees

A decision tree is a method for classification/regression that 

aims to ask a few relatively simple questions about an input

and then predicts the associated output

Decision trees are useful to a large degree because of their 

simplicity and interpretability

The resulting output rule is something that can easily be 

inspected and interpreted by hand… something that is not 

really the case with most algorithms

We will also see later that decision trees form a useful 

building block for other more sophisticated algorithms



Hypothetical example

Suppose we are given a dataset where the     are 7-

dimensional feature vectors with features 

1. Undergraduate GPA (4.0 scale)

2. Quantitative GRE score (130-170)

3. Verbal GRE score (130-170)

4. Analytical Writing GRE score (0-6)

5. Undergraduate institution reputation (0-100)

6. Statement of purpose evaluation (0-100)

7. Letter of recommendation evaluation (0-100)

The labels for this dataset are:



Example decision tree 

Y N

Y N Y N

Y N Y N

Y N Y N



Generalizations

Decision trees can be applied to regression where the labels 

at the “leaf nodes” are real-valued (or real-valued functions)

Other generalizations include:

• splits that involve more than one feature

• Splits involving more than two outcomes

Y N



Binary decision trees

Using multiple features and allowing splits with more than 

two outcomes generally increases the risk of overfitting

We will restrict our attention to binary, single-feature splits

In this case, every (binary) decision tree is associated with a 

partition of the feature space that looks something like this 

example in   



Terminology

• The elements of the partition are called cells

• Recall that a graph is a collection of nodes or vertices, 

some of which are joined by edges

• The degree of a vertex is the number of edges incident on 

that vertex

• A tree is a connected graph with no cycles



When is a tree not a tree?



Rooted binary trees

A rooted binary tree is a tree where 

– one vertex, called the root, has degree 2

– and all other vertices have degree 1 or 3

• vertices with degree 1 are called leaf or terminal vertices

• vertices with degree 2 or 3 are called internal vertices



More terminology

• The depth of a vertex is the length to the root

• The parent of a vertex is the neighbor with depth one less

• Two vertices are siblings if they have the same parent

• A subtree is a subgraph that is also a tree

• A rooted binary subtree is a subtree that contains the 

root and is such that if any non-root vertex is in the 

subtree, so is its sibling

A binary decision tree is a rooted binary tree where each 

internal vertex is associated with a binary classifier, and each 

leaf with a label



Learning decision trees

Let      denote the set of all binary decision trees

Given a dataset                                   , it might be tempting 

to pose the learning problem as an optimization problem of 

the form

where     is an appropriate loss function, e.g.,

• 0/1 loss for classification

• squared error loss for regression

Unfortunately, this will lead to massive overfitting

If we grow the tree deep enough, we can usually fit the 

training data perfectly!



Penalized empirical risk minimization

Since deep/complex decision trees tend to overfit, we would 

like to avoid such trees

A natural way to quantify the complexity of a tree is the 

number of leaf nodes, which we denote by

Note that if              , we would very likely be overfitting

The penalized ERM approach is to consider the optimization 

problem



Learning a tree in practice

Unfortunately, this optimization problem is intractable

A two-stage procedure is typically employed in practice

1. Grow a very large tree      in a greedy fashion

2. Prune      by solving

where      is the set of all decision trees based on rooted 

binary subtrees of 



Growing a decision tree

The construction of      follows a simple greedy (looking just 

one step ahead) strategy

1. Start at the root vertex (i.e., the entire feature space)

2. Decide whether to stop growing tree at current vertex

– If yes, assign a label and stop

3. If no, consider all possible ways to split the data in the 

cell corresponding to the current vertex, and select the 

best one

4. For each branch of the split, create a new vertex and go 

to step 2



Implementation

To implement this strategy, we need:

• A list of possible splits

When considering splits based on a single real-valued 

feature, splits have the form 

Since there are only     data points, only at most          

values of    need to be considered for each    

For discrete or categorical features, other simple splits can 

be used, such as



Implementation

To implement this strategy, we need:

• A labeling rule

For classification, we can just assign labels by majority 

vote over data in the cell corresponding to the current 

vertex

For regression, we can just take the average of the     in 

the cell for a piecewise constant approximation

(or least squares fit for piecewise polynomial or other 

approximation)



Implementation

To implement this strategy, we need:

• A rule for stopping splitting

The most common strategy is to just split until each leaf 

vertex contains a single data point

• A rule for selecting the best split

This is the hard part!



Split selection

Let’s focus on binary classification

Suppose      is a leaf vertex at some stage in the growing 

process

We can think of      as also defining a cell in the feature 

space, allowing us to consider

Intuitively, a good split of     will lead to children that are 

more homogenous or pure than 

To define this, we will define a notion of impurity



Impurity measure

Assume the class labels are

Let 

Note that                       defines a probability distribution on 

the labels (i.e., on the probability of getting each label on a 

randomly selected point in    )

An impurity measure is a function          such that

• , with                   iff consists of a single class

• a larger value of          indicates that the distribution 

defined by                      is closer to the uniform 

distribution 



Examples

Entropy:

Gini index:

Misclassification rate:

entropy

Gini index

misclassification

rate



Using the impurity measure

To select the best split, we aim to maximize the decrease in 

impurity

Let      and      be two children of   

Define

The decrease in impurity is

When    is entropy, this is called the information gain



Nonnegativity of decrease in impurity

Proposition

If    is concave as a function of   , then

for all      and       

If    is strictly concave and                and , then 

equality holds if and only if                      , where     is the 

proportion of class 1 in 

Because of this fact, strictly concave impurity measures are 

generally preferred

Note that this generalizes easily to multiclass classification



Proof

Want to show

If we write                       , then we have

Since     and     are assumed to be nonempty,                   and

, and therefore equality holds if and only if     

, in which case                      .

Jensen’s

inequality



Pruning

Pruning the model involves solving the optimization problem:

is additive in the following sense:

For any tree    , let                               be the partition of the 

tree corresponding to the children of the root vertex

Then        

Applying this idea recursively suggests a natural algorithm of 

weakest link pruning. One can also attack this via an 

efficient “bottom up” dynamic programming approach.



Why grow then prune?

Why should we go to the trouble of growing the tree and then 

pruning?

A simpler approach would be to just grow the tree and then 

stop when the decrease in impurity is neglibible

Answer: Ancillary splits

These are splits that have no value by themselves, but enable 

useful splits later on



Remarks

Advantages 

• interpretable

• rapid evaluation

• easily handles

– categorical/mixed data

– missing data

– multiple classes 

Disadvantages

• unstable: slight perturbations of training data can 

drastically alter the learned tree

• jagged decision boundaries


