
Binary decision trees

A binary decision tree ultimately boils down to taking a 

majority vote within each cell of a partition of the feature 

space (learned from the data) that looks something like this 

example in   

Drawbacks

– Unstable

– “Jagged” decision boundaries



Ensemble methods

Ensemble methods address both of these deficiencies in 

decision trees as well as other algorithms

The first step is to generate a number of classifiers                   

(all using the same dataset) using some method that typically 

involves some degree of randomness

The second step is to combine these into a single classifier 

Even if none of the individual classifiers are particularly good, 

the combined result can far outperform any of the individual 

classifiers and can be surprisingly effective



“The wisdom of the crowds”

Sir Francis Galton (1822-1911)

– cousin of Charles Darwin

– statistician (introduced correlation and standard deviation)

– father of eugenics… wary of democracy and distrustful of  

“the mob”

How much does this ox weigh?

If we collect hundreds of uneducated farmers (with no 

particular expertise in weighing oxen), how well will they do?

Mean of the guesses: 1,197 pounds

Actual weight: 1,198 pounds



An example in classification

Suppose that the feature space is            and that the data 

looks like:

In this scenario, the Bayes risk is zero… 

But the risk of certain simple classifiers can still be large



Histogram classifiers

Suppose that we are using histogram classifiers

In particular, we are using classifiers based on a regular 

partition of            into 9 squares

Label of each cell determined by majority vote



This classifier will not perform very well for the given 

distribution (or indeed, most distributions)

The risk of this

classifier is:

You can easily imagine that binary decision trees would have 

similar trouble with this example

However, we will see that with an appropriate ensemble 

method, we can make this classifier much more effective

Histogram classifiers are pretty bad!



Randomly shifted histogram classifiers

Suppose that we generate                       uniformly at random

Then shift the partition by 



Ensemble histogram classifier

Generate                   as independent randomly shifted 

histogram classifiers and take majority vote

Example:



Remarks

Not only is the ensemble method better performing…

It is also much more stable

More formally, a machine learning method is stable if a small 

change in the input to the algorithm leads to a small change 

in the output (e.g., the learned classifier)

Decision trees are a primary example of an unstable 

classifier, and benefit considerably from ensemble methods

– more on this in a bit!

Notice that the main step in our approach above was to 

introduce some form of randomization into the algorithm…



Bagging

Another way to introduce some randomness is via bagging

Bagging is short for bootstrap aggregation

Given a training sample of size    , for                        let

be a list of size obtained by sampling from 

with replacement

Recall that is called a bootstrap sample

Suppose we have a fixed learning algorithm

Let      be the classifier we obtain by applying this learning 

algorithm to 

The bagging classifier is just the majority vote over



Random forests

A random forest is an ensemble of decision trees where each 

decision tree is (independently) randomized in some fashion

Bagging with decision trees is a simple example of a random 

forest

In the specific context of decision trees, bagging has one 

pretty big drawback

• bootstrap samples are highly correlated

• as a result, the different decision trees tend to select the 

same features as most informative

• this leads to partitions that tend to be highly correlated

• we would rather have partitions that are more 

“independent” 



Random feature selection

One way to achieve this is to also incorporate random 

feature selection

– generate an classifiers by choosing random subsets of features 

and designing decision trees on just those features

– can be combined with bagging

Random features lead to less correlated partitions, translating 

to a reduced variance for the ensemble prediction

Rule of thumb: use        random features

Random forests are possibly the best “off-the-shelf” 

method for classification

Approach also extends to regression



Boosting

Boosting is another ensemble method

Unlike previous ensemble methods, in boosting: 

• the ensemble classifier is a weighted majority vote

• the elements of the ensemble are determined sequentially

Assume that the labels are 

The final classifier has the form

where                   are called base classifiers and

are (positive) weights that reflect confidence in   



Base learners

Let                       be the training data

Let      be a fixed set of classifiers called the base class

A base learner for     is a rule that takes as input a set of 

weights                                 satisfying 

and outputs a classifier            such that the weighted 

empirical risk

is (approximately) minimized



Examples

Examples of base classifiers include:

• decision trees

• decision stumps (i.e., decision trees with a depth of 1)

• radial basis functions, i.e.,

where            and      is and rbf kernel

Note that the base classifiers can be extremely simple

In such cases,            can be minimized by an exhaustive 

search over

For more complex classifiers (e.g., decision trees) the base 

learner can resample the training data (with replacement) 

according to     and then use standard learning algorithms



The boosting principle

The basic idea behind boosting is to learn

sequentially, where     is produced by the base learner given a 

weight vector

The weights are updated to place more emphasis on elements 

in the training set that are harder to classify

Thus the weight update rule should obey:

• Downweight: If                    , set  

• Upweight: If , set



Adaboost

Adaboost, short for adaptive boosting, was the first 

concrete algorithm to successfully use the boosting principle

Algorithm

Input:

Initialize: 

For    

• use the base learner to estimate     with     as input

• compute 

• set

• update the weights via

Output: 



Weak learning

Adaboost can be justified by the following result

Theorem

Suppose that                              and denote

The training error of Adaboost satisfies

In particular, if                     for all   , then



Weak learning

The requirement that                     is equivalent to requiring 

that  

This essentially means that all we require is that our base 

learner can do at least slightly better than random guessing

When this holds, our base learner is said to satisfy the weak 

learning hypothesis

The theorem says that under the weak learning hypothesis, 

the Adaboost training error converges to 0 exponentially fast

To avoid overfitting, the parameter     should be chosen 

carefully (e.g., by cross-validation)



Remarks

• If            , then 

– in other words, if there is a classifier in     that perfectly 

separates the data, Adaboost says to just use that classifier

• Adaboost can be interpreted as an iterative (gradient 

descent) algorithm for minimizing the empirical risk 

corresponding to the exponential loss

• By generalizing the loss, you can get different boosting 

algorithms with different properties

– e.g., Logitboost


