
Ensemble methods in machine learning

• Bootstrap aggregating (bagging)
– train an ensemble of models based on randomly resampled 

versions of the training set, then take a majority vote

• Boosting
– iteratively build an ensemble by training each new model to 

emphasize the parts of the training set that the previous 
model struggled with

• Stacking
– train a learning algorithm to combine the predictions of other 

learning algorithms

Example

What if you used the output of two linear classifiers as the 
input to another linear classifier?

This is a particular example of a neural network
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Neural networks

Formally, a neural network is expressed mathematically via

where        are fixed activation functions and                         
are parameters to be learned from the data

Example
The previous example fits this model with              and



Typical neural networks

In general, learning the parameters for a neural network can 
be quite difficult

To make life easier, it is nice to choose        to be 
differentiable

A historically common choice for    is the logistic/sigmoid 
function

The choice of    depends somewhat on the application

Typical neural networks

The choice of    depends somewhat on the application

Regression (           )

Binary classification (                                     )

Multiclass classification (                                     )

Remarks

• Like SVMs, neural networks fit a linear model in a nonlinear 
feature space

• Unlike SVMs, those nonlinear features are learned
• Unfortunately, training involves nonconvex optimization
• Originally conceived as models for the brain

– nodes are neurons 
– edges are synapses
– if    is a step function, this represents a neuron “firing” when 

the total incoming signal exceeds a certain threshold
– note that our choices for        are not exactly step functions, 

but smooth approximations – this also means our output is 
continuous (must be quantized in the case of classification)   

Training neural networks

Given training data                                    , where
and              , we would like to estimate the

parameters 



Training neural networks Simplifying the notation

Note that we can always augment a “1” to our input data 
(increasing the dimension to           ) and constrain the
to also ensure that  

If we do this, we may omit       and      to arrive at the simpler 
formulation

Letting     denote the matrix having rows       and      the 
matrix having rows       , we can also write this as

Training neural networks

Given training data                                    , where
and              , we would like to estimate the

parameters 

For simplicity, let

To emphasize the dependence of our network on the 
parameters    , we will write the output of the network when 
given input     as 

We would like to choose     to ensure that

We can quantify this by choosing a loss function which we 
will seek to minimize by picking     appropriately

Loss functions

Regression or binary classification

For     

or for vector-valued regression problems



Loss functions

General classification

In the case of classification where             , we can define the 
as indicator vectors in       (e.g.,                                      )

In this case a natural loss function is

This is called the cross entropy

If we interpret the outputs of our neural network              
as class conditional probabilities, this is computing the 
negative log-likelihood of     given the training data, and is 
hence a natural quantity to minimize

Nonconvex optimization

Because of the complex interactions between the parameters 
in    , these objective functions do not lead to convex 
optimization problems

A local minimum is not necessarily a global minimum

The best we can hope for is to try to find a local minimum, 
and hope that this gives us good performance in practice

local minimum

global minimum

Aside…

This is currently a very active area of research, but there is 
some preliminary evidence that the picture I just showed you 
is not really an accurate depiction of the nonconvexity that 
typically arises in practice

It may be the case that the picture really looks more like

Perhaps most/all local minima are equally good! 
(highly speculative…)

Gradient descent

A simple way to try to find the minimum of our objective 
function is to iteratively “roll downhill”

From        , step in the direction of the negative gradient

: “step size”



Squared error loss

Today, we will focus on how to train to minimize the squared 
error loss 

Our task is to compute              for some given 

Back to the picture

Set

Deriving the gradient: Second layer

prediction error

weighted prediction error

Deriving the gradient: Second layer

We can more compactly write

where

Hadamard product
(element-wise multiplication)



Deriving the gradient: First layer Deriving the gradient: First layer

We can express this in matrix form as

Gradient descent update

The update at iteration            is

The weights in our formula for the partial derivatives depend 
on the previous parameter estimate  

We can calculate this gradient very efficiently because of the 
special structure imposed by the network

Computing the gradient

Notice that given                      , we can compute 

Given     , we can then compute

This suggests an efficient two-pass algorithm for computing 
the gradient at each iteration



Backpropagation

Forward pass

Using current weights       , feed each     into the network 
and compute

•

•

•

•

Backpropagation

Backward pass
Now compute

•

•

Next, “back-propagate” these values to the previous layer

•

•

Forward pass Backward pass



Convergence speed

In backpropagation, each hidden unit passes and receives 
information to and from only those units to which it is 
connected

Much faster way to compute the gradient than a naïve 
approach

Lends itself naturally to parallel implementations

Gradient descent can still be pretty slow to converge…

Initialization

Initial conditions make a big difference

To avoid “saturation”, it is often a good idea to pre-process 
the data to have zero mean and unit variance or to be scaled 
to lie in 

Since our objective function will have many local minima, it is 
generally a good idea to try several random starting values  

Common heuristics for initializing the weights in a fully 
connected layer mapping       inputs to       outputs is to 
sample each weight from

•

•

Multi-layer neural networks

This framework, along with the backpropagation algorithm, 
can easily be extended to networks with multiple hidden 
layers

Has had a resurgence in recent years under the name 
“deep learning”


