
Ensemble methods in machine learning

• Bootstrap aggregating (bagging)
– train an ensemble of models based on randomly resampled

versions of the training set, then take a majority vote

• Boosting
– iteratively build an ensemble by training each new model to

emphasize the parts of the training set that the previous
model struggled with

• Stacking
– train a learning algorithm to combine the predictions of other

learning algorithms

Example

What if you used the output of two linear classifiers as the
input to another linear classifier?

This is a particular example of a neural network

Neural networks

input
layer

hidden
layer

output
layer

Neural networks

Formally, a neural network is expressed mathematically via

where are fixed activation functions and
are parameters to be learned from the data

Example
The previous example fits this model with and

Typical neural networks

In general, learning the parameters for a neural network can
be quite difficult

To make life easier, it is nice to choose to be
differentiable

A historically common choice for is the logistic/sigmoid
function

The choice of depends somewhat on the application

Typical neural networks

The choice of depends somewhat on the application

Regression ()

Binary classification ()

Multiclass classification ()

Remarks

• Like SVMs, neural networks fit a linear model in a nonlinear
feature space

• Unlike SVMs, those nonlinear features are learned
• Unfortunately, training involves nonconvex optimization
• Originally conceived as models for the brain

– nodes are neurons
– edges are synapses
– if is a step function, this represents a neuron “firing” when

the total incoming signal exceeds a certain threshold
– note that our choices for are not exactly step functions,

but smooth approximations – this also means our output is
continuous (must be quantized in the case of classification)

Training neural networks

Given training data , where
and , we would like to estimate the

parameters

Training neural networks Simplifying the notation

Note that we can always augment a “1” to our input data
(increasing the dimension to) and constrain the
to also ensure that

If we do this, we may omit and to arrive at the simpler
formulation

Letting denote the matrix having rows and the
matrix having rows , we can also write this as

Training neural networks

Given training data , where
and , we would like to estimate the

parameters

For simplicity, let

To emphasize the dependence of our network on the
parameters , we will write the output of the network when
given input as

We would like to choose to ensure that

We can quantify this by choosing a loss function which we
will seek to minimize by picking appropriately

Loss functions

Regression or binary classification

For

or for vector-valued regression problems

Loss functions

General classification

In the case of classification where , we can define the
as indicator vectors in (e.g.,)

In this case a natural loss function is

This is called the cross entropy

If we interpret the outputs of our neural network
as class conditional probabilities, this is computing the
negative log-likelihood of given the training data, and is
hence a natural quantity to minimize

Nonconvex optimization

Because of the complex interactions between the parameters
in , these objective functions do not lead to convex
optimization problems

A local minimum is not necessarily a global minimum

The best we can hope for is to try to find a local minimum,
and hope that this gives us good performance in practice

local minimum

global minimum

Aside…

This is currently a very active area of research, but there is
some preliminary evidence that the picture I just showed you
is not really an accurate depiction of the nonconvexity that
typically arises in practice

It may be the case that the picture really looks more like

Perhaps most/all local minima are equally good!
(highly speculative…)

Gradient descent

A simple way to try to find the minimum of our objective
function is to iteratively “roll downhill”

From , step in the direction of the negative gradient

: “step size”

Squared error loss

Today, we will focus on how to train to minimize the squared
error loss

Our task is to compute for some given

Back to the picture

Set

Deriving the gradient: Second layer

prediction error

weighted prediction error

Deriving the gradient: Second layer

We can more compactly write

where

Hadamard product
(element-wise multiplication)

Deriving the gradient: First layer Deriving the gradient: First layer

We can express this in matrix form as

Gradient descent update

The update at iteration is

The weights in our formula for the partial derivatives depend
on the previous parameter estimate

We can calculate this gradient very efficiently because of the
special structure imposed by the network

Computing the gradient

Notice that given , we can compute

Given , we can then compute

This suggests an efficient two-pass algorithm for computing
the gradient at each iteration

Backpropagation

Forward pass

Using current weights , feed each into the network
and compute

•

•

•

•

Backpropagation

Backward pass
Now compute

•

•

Next, “back-propagate” these values to the previous layer

•

•

Forward pass Backward pass

Convergence speed

In backpropagation, each hidden unit passes and receives
information to and from only those units to which it is
connected

Much faster way to compute the gradient than a naïve
approach

Lends itself naturally to parallel implementations

Gradient descent can still be pretty slow to converge…

Initialization

Initial conditions make a big difference

To avoid “saturation”, it is often a good idea to pre-process
the data to have zero mean and unit variance or to be scaled
to lie in

Since our objective function will have many local minima, it is
generally a good idea to try several random starting values

Common heuristics for initializing the weights in a fully
connected layer mapping inputs to outputs is to
sample each weight from

•

•

Multi-layer neural networks

This framework, along with the backpropagation algorithm,
can easily be extended to networks with multiple hidden
layers

Has had a resurgence in recent years under the name
“deep learning”

