
Multi-layer neural networks

The neural net framework, along with the backpropagation 
algorithm, can easily be extended to networks with multiple 
hidden layers

Has had a resurgence in recent years under the name 
“deep learning”

Deep learning

Why deep learning?

Because it works!

Maybe a better question is why not deep learning?

• there are lots of parameters to optimize over

• this means that overfitting is a real risk

• success requires careful design of your network structure 
and use of regularization and other clever techniques

• success may also require massive amounts of data

• these days, maybe it is not always so hard to get massive 
amounts of data, but this makes training slow

• getting success on big problems in a reasonable amount of 
time requires careful initialization and the use of many 
tools from optimization

Deep learning architectures

With these challenges in mind, what choices do people 
typically make in practice?

• choose activation functions and a loss function that make 
optimization easier

• want to avoid situations where the gradient is tiny, but you 
are far from the true solution
– “saturation”



Choice of loss function

Regression

Classification

Choice of output units

The choice of    (mapping from the last hidden layer to the 
output) depends on the application

Regression

Classification

Saturation

Notice that the combination of loss function and output unit 
work together to avoid the saturation problem 

Regression

Classification

One can show that this combination will only “saturate” when
is already predicting     correctly 

Choice of hidden units

For hidden units in a deep architecture the most common 
choice is the rectified linear unit (ReLU)

ReLUs use the activation function

Note that the derivative is (usually) very easy to calculate

Not differentiable at zero, but generalizations exist



Regularization

To avoid overfitting the data, regularization is crucial

Choose    to minimize

This encourages small (or zero) weights

Note that when the weights are small, the effect of the 
nonlinear functions        can go away

If we constrain all weights to be small, the entire network can 
approximately reduce to a simple linear classifier

Encouraging small weights in the network reduces the 
effective number of degrees of freedom

or

How many layers/units?

• Choosing the number of hidden layers and number of units 
in each layer is more art than science

• In general, it seems to be better to have too many 
parameters rather than too few, and rely on regularization 
to avoid overfitting

• Additional strategies to control overfitting include
– early stopping
– dropout
– parameter sharing
– dataset augmentation

Early stopping

When running gradient descent, you would think that more 
iterations would always be better…

Early stopping serves as a form of regularization

Number of iterations

Loss

Training set

Validation set

Dropout

Another way to control overfitting is through a technique 
called dropout

At each step of gradient descent, a randomly selected subset 
of the weights are “masked” (temporarily set to zero)

A gradient is computed, a step is taken, and the process is 
repeated with a new subset of weights being masked

This can be thought of as approximating a method of bagging
which trains many neural networks and averages the output, 
without actually having to train an ensemble of networks

Also can be show to act as a form of regularization



Parameter sharing

Instead of using regularization to keep the parameters small, 
another common strategy is to place constraints on the 
parameters

Force sets of parameters to be equal

This is the underlying idea of convolutional neural networks, 
where the linear mapping to the hidden layers is of the form 
of a convolution

Weights can be modeled via circulant matrices 
(same parameters for each row)

More on this later…

Dataset augmentation

Overfitting is fundamentally a problem of having too many 
parameters and not enough data

In many application areas, it can be possible to generate 
more training data on demand

For example, images can be
• translated
• rotated
• zoomed
• warped, occluded, and subjected to other distortions
without changing the correct class label
It may be possible to generate lots of extra training data…

Adversarial training

If you work at it, it is also possible to generate some rather 
strange training data…

This highlights some strange behavior, but also provides a way 
to generate augmented data that can help make deep 
networks much more robust

Large-scale gradient descent

Some of the most impressive results achieved by deep 
architectures have been on large-scale image datasets

Consider the ImageNet dataset

• 14 million images

• 1000 classes

Each gradient step is incredibly expensive…

• make each step faster

• try to take fewer steps

• initialization is super important!
– careful normalization if using random weights

– pre-training using unsupervised learning techniques 



Stochastic gradient descent

The best way to make gradient descent faster on large data 
sets is something we have already seen…

Stochastic gradient descent

Simply compute an estimate of the gradient at each iteration 
by randomly sampling a subset of the training data instead of 
working with the whole dataset

This might result in an increase in the total number of 
iterations required to converge, but the speedup in each 
iteration can be so large that this tradeoff is often worth it

Other first-order methods

We have talked a lot about gradient descent, but there has 
been a lot of research recently in other first-order variants 
that can often result in much faster convergence

Heavy ball method
(Gradient descent with momentum)

Momentum term can cancel out “oscillations” in certain 
dimensions, resulting in convergence in fewer iterations

See also Nesterov’s accelerated methods

gradient update momentum

Convolutional neural networks

The neural net architecture you’ve most likely heard of in the 
news is the convolutional neural network (CNN)

Makes the explicit assumption that the input is an image

Constrains the structure of the network in a sensible way to 
make learning the weights scalable to high-resolution images

Main insight: Translation invariance

Convolutional layer

The weights we apply to raw pixels should be the same, no 
matter where the object is located in the image

We begin by convolving the image with       different filters
– filters are localized, the filter weights represent the 

parameters to be learned 

The output of these filters are then passed through a ReLU

image

receptive
field

outputs of different filters



Pooling layer

The other key concept in CNNs is pooling (downsampling)

Given the output of a filter, we can downsample the output 
to produce a smaller number of coefficients for the next layer

Most common choice is known as max pooling

Intuition: the precise location of a feature is not important

A CNN will typically have a pooling layer after each 
convolution layer

Full CNN

Yann LeCun (1998)

Note that as you go deeper and subsample more, there are 
more filters/feature maps available

After a certain depth, the network simply consists of fully 
connected layers

Other deep architectures

• Recurrent neural networks
– output of hidden nodes feeds back as input to other hidden 

nodes
– used in time-series prediction

• Autoencoders
– input and output are the same, but number of hidden nodes is 

constrained to be small relative to input dimension
– form of dimensionality reduction

• Deep belief networks, restricted Boltzman machines, …
– graphical models, probabilistic autoencoders

• …

When to use deep learning?

As a last resort!

In all seriousness, I suggest tackling a new problem by starting 
with simpler models first

1. Try a linear classifier (logistic regression/linear SVM)

2. If that doesn’t work, try
– nearest neighbors if you have lots of data in low-dimensions

– naïve Bayes if you have data (esp text) in high-dimensions

3. If that still doesn’t work, try
– random forests

– support vector machines with a polynomial or rbf kernel

– boosting

4. If you’ve convinced yourself that none of the above work 
well enough, then you are justified in going deep…


